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Abstract

Clustering tagged videos into semantic groups is important
but challenging due to the need for jointly learning correla-
tions between heterogeneous visual and tag data. The task
is made more difficult by inherently sparse and incomplete
tag labels. In this work, we develop a method for accurately
clustering tagged videos based on a novel Hierarchical-Multi-
Label Random Forest model capable of correlating struc-
tured visual and tag information. Specifically, our model ex-
ploits hierarchically structured tags of different abstractness
of semantics and multiple tag statistical correlations, thus dis-
covers more accurate semantic correlations among different
video data, even with highly sparse/incomplete tags.

Introduction
A critical task in video analysis is to automatically discover
the intrinsic semantic groups of large quantities of video data
(Poppe 2010; Niebles, Wang, and Fei-Fei 2008). However,
semantic video clustering by visual feature analysis alone
is inherently limited due to the semantic gap between low-
level visual features and high-level semantics, particularly
under the “curse” of high dimensionality (Beyer et al. 1999).
On the other hand, videos are often attached with additional
non-visual data, e.g. typically some textual sketch. Such text
information include short tags contributed by either users
or content providers, such as videos from the YouTube and
TRECVID dataset. Exploiting readily accessible textual tags
may be beneficial to video clustering as they possess seman-
tic perspectives unique to visual features.

In general, joint learning of visual and text information,
two different heterogeneous data modalities, in a shared
representational space is non-trivial because: (1) The het-
eroscedasticity problem (Duin and Loog 2004), that is, dis-
parate data modalities significantly differ in representation
(continuous or categorical) and distribution characteristics
with different scale and covariance. In addition, the dimen-
sionality of visual data often exceeds that of tag data by
a great extent, e.g. thousands vs. tens. Due to this dimen-
sionality discrepancy problem, a simple concatenation of
feature spaces will result in an unbalanced representation
favourably inclined towards one dominant modality data,
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leading to suboptimal results. (2) Visual features can be in-
accurate and unreliable, due to the inherently ambiguous and
noisy visual observation. It is non-trivial to quantify deter-
ministically which feature dimensions are reliable in differ-
ent videos. (3) The available text tags of video data are of-
ten sparse and incomplete. This causes that the visual (with
much richer but also noisier and redundant information) and
tag (being often sparsely labelled and incomplete) data are
not always directly correlated.

Some progress has been made recently on clustering
tagged videos. For example, the method of (Zhou et al.
2013) separates the whole task into two independent stages:
Tag model learning and video clustering, so that the het-
eroscedasticity problem can be well mitigated. (Vahdat,
Zhou, and Mori 2014) move one step further by not
only jointly modelling the correlations between visual fea-
tures, tags and clusters, but also handling the tag sparse-
ness/incompleteness issue with a tag flipping strategy. Al-
ternatively, data embedding (Chang et al. 2015) can be an-
other solution. However, all these methods are restricted in
the following ways.
(I) Tag structure. In these models, tags are organised and
used in a flat structure. Nonetheless, different tags may cor-
respond to varying degrees of concept abstractness, e.g. in
a hierarchical structure. Ignoring such inherent tag structure
may cause degraded data modelling or knowledge loss, as
suggested in studies of tag recommendation (she 2008), im-
age segmentation (Zheng et al. 2014), and object recognition
(Deng et al. 2014). Typically, existing methods as above as-
sume an accurate hierarchy structure. However, this is not
always available, e.g. tag extracted from some loosely struc-
tured data source can only provide a rough hierarchy with
potentially inaccurate relations, as the meta-data associated
with TRECVID videos. Such noisy hierarchy imposes more
challenges but still useful if used properly.
(II) Tag correlations. Moreover, tag statistical correlations
are not exploited by these clustering models, partly due
to model complexity, i.e. incorporating such information
into these models is not straightforward nor easy. Corre-
lations are potentially useful as they can offer informa-
tive inter-tag constraints. Common tag correlations include:
(1) co-occurrence which has been used for image annota-
tion (Griffiths and Ghahramani 2005; Chen et al. 2010),
and object classification (Deng et al. 2014), and (2) mutual-
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Figure 1: A framework for semantic clustering of tagged videos. (a) Example tagged video; (b) The HML-RF model designed
to exploit the inherent tag hierarchy for modelling correlations between ambiguous visual features and sparse tags; (c) HML-RF
model based discovery of semantically constrained affinity matrix; (d) Graph-based clustering to discover semantically grouped
videos; (e) Resulting video clusters with semantic similarity despite significant visual disparity.

exclusion considered in object detection (Choi et al. 2010;
Desai, Ramanan, and Fowlkes 2011), multi-label image an-
notation (Chen et al. 2011), multi-task learning (Zhou, Jin,
and Hoi 2010), object recognition (Deng et al. 2014). Note,
our problem differs significantly from these works since:
(i) We want to exploit both correlations in an unsupervised
rather than supervised setting. (ii) Instead of assuming the
availability of these tag correlations (Deng et al. 2014), we
automatically mine them from sparsely labelled data. Our
goal is to exploit automatically extracted unreliable tag cor-
relations for video semantic clustering.

In this work, we develop a model for video semantic
clustering by employing both visual features and available
sparse/incomplete text tags associated with the videos. We
make the following contributions: (I) We formulate a novel
tag-based video clustering method capable of effectively
fusing information from ambiguous/noisy visual features
and sparse/incomplete textual tags. This is made possible by
introducing a new Hierarchical-Multi-Label Random Forest
(HML-RF) model with a novel information gain function
that allows to model the interactions between visual features
and multiple tags simultaneously. Specifically, our model is
designed to minimise the uncertainty of tag distributions in
an “abstract-to-specific” hierarchical fashion so as to exploit
and utilise the intrinsic tag hierarchy structure. (II) We intro-
duce a unified tag correlation based algorithm to cope with
the tag sparseness/incompleteness problem existing mod-
els do not address. Specifically, we formulate a principled
way of integrating two automatically mined statistical cor-
relations (co-occurrence and mutual-exclusion) among tags
locally during model optimisation. Extensive comparative
evaluations on benchmark video/image datasets show the
advantages of our model over state-of-the-art methods.

Methodology
Rational for model design. We want to formulate a uni-
fied tag-based video clustering model capable of address-
ing the aforementioned challenges and limitations of exist-
ing methods. Specifically, to mitigate the heteroscedastic-
ity and dimension discrepancy problems, we need to iso-
late different characteristics of visual and tag data, yet can
still fully exploit the individual modalities as well as cross-
modality interactions in a balanced manner. For handling
tag sparseness and incompleteness, we propose to utilise

the constraint information derived from inter-tag statisti-
cal correlations (Griffiths and Ghahramani 2005; Choi et
al. 2010; Deng et al. 2014). To that end, we wish to ex-
plore random forest (Breiman 2001; Shi and Horvath 2006;
Criminisi 2012) because of: (1) Its flexible training objec-
tive function for facilitating multi-modal data modelling and
reformulation; (2) The decision tree’s hierarchical struc-
tures for flexible integration of abstract-to-specific struc-
tured tag topology; (3) Its inherent feature selection mech-
anism for handling data noise. Also, we need to address
several shortcomings of the conventional clustering forest
(Shi and Horvath 2006; Zhu, Loy, and Gong 2014; 2013a;
2015a), as in its original form it is not best suited for solving
our problems in an unsupervised way. Specifically, cluster-
ing forest expects a fully concatenated representation as in-
put during model training, it therefore does not allow a bal-
anced utilisation of two modalities simultaneously (the di-
mension discrepancy problem), nor exploit interactions be-
tween visual and tag features. The existing classification for-
est is also not suitable as it is supervised and aims to learn
a prediction function with class labelled training data (usu-
ally a single type of tag) (Breiman 2001). Typical video tags
do not offer class category labels. However, it is interesting
to us that in contrast to the clustering forest, the classifica-
tion forest offers a more balanced structure for using visual
(as split variables) and tag (as semantic evaluation) data that
is required for addressing the heteroscedasticity problem by
isolating the two heterogeneous modalities during learning.
Approach overview. We want to reformulate classifica-
tion forest for clustering videos with tags. To that end, we
propose a novel Hierarchical-Multi-Label Random Forest
(HML-RF). Our model goes beyond the classification for-
est in the following aspects: (1) Employing tags to constrain
tree structure learning, rather than learning a generalised
prediction function as (Breiman 2001; Criminisi 2012); (2)
Introducing a new objective function allowing acceptance
of multi-tags, exploitation of abstract-to-specific tag hier-
archy and accommodation of multiple tag correlations si-
multaneously. Instead of learning a classifier, HML-RF is
designed to measure pairwise semantic proximity between
videos for more accurately revealing the data affinity rela-
tionships. These affinity measures over data samples imply
their underlying data group/cluster relations that can be then
obtained using a standard graph based clustering algorithm.
Our tag-based video clustering pipeline is depicted in Fig. 1.



Notations. We consider two data modalities: (1) Vi-
sual modality - We extract a d -dimensional visual de-
scriptor from the i-th video sample denoted by xi =
(xi,1, . . . , xi,d) ∈ Rd , i = 1, . . . , n. All visual features
are formed as X = {xi}ni=1. (2) Tag modality - Tags are
extracted from the meta-data files associated with videos.
We represent m types of binary tag data (Z = {1, . . . ,m})
attached with the i-th video as yi = (yi,1, . . . , yi,m) ∈
[0, 1]m . All tag data is defined as Y = {yi}ni=1.
Hierarchical-Multi-Label Random Forest (HML-RF).
Let us introduce a HML-RF model, which is an extended
hybrid model of classification and clustering forests. The
model inputs include visual features x and tag data y of
video samples (analogous to classification forest), and the
output is an estimated affinity matrix A over input samples
X (similar to clustering forest). Specifically, HML-RF con-
tains an ensemble of τ decision trees (HML-trees). Growing
a HML-tree t involves a recursive node splitting procedure
on randomly sampled data Xt ⊂ X until some stopping cri-
terion is satisfied. The training of each split node is a process
of binary split function optimisation, defined as

h(x,w) =

{
0 if xw1

< w2,
1 otherwise. (1)

with two parameters w = [w1, w2]: (i) a feature dimension
xw1

with w1 ∈ {1, . . . , d}, and (ii) a feature threshold w2

The optimal split parameter w∗ is chosen via

w∗ = argmaxw∈W∆ψsl, (2)

where W = {wi}
νtry(|S|−1)
i=1 represents a parameter set over

νtry randomly selected features, with S the sample set reach-
ing the node s. The cardinality of a set is given by | · |. The
information gain ∆ψsl is formulated as

∆ψsl = ψs −
|L|
|S|

ψl −
|R|
|S|

ψr, (3)

where L and R denote the data set routed into the left l
and right r children, and L ∪ R = S. The uncertainty ψ
over the tag distribution can be computed as the Gini impu-
rity (Breiman et al. 1984).
Accommodating multiple tags. Conventional classification
forests typically assume single tag (or label) type. In con-
trast, the new HML-RF can accept multiple types simulta-
neously by extending the single-tag based information gain
function Eqn. (3) to multi-tags for training HML-trees:

∆ψml =

m∑
i=1

∆ψisl (4)

where ∆ψisl is individual information gain computed in the
i-th tag by Eqn. (3). Hence, the split functions are opti-
mised in a similar way as supervised classification forests,
and semantics from multiple tags are enforced simultane-
ously. Discussion: In the context of tagged video clustering,
it should be noted that our way of exploiting tags is not su-
pervised since the tags are not target classes. We call this
structurally-constrained clustering. Additionally, the inter-
actions between visual features (on which split functions are

defined) and tags (used to optimise split functions) are also
modelled during learning via identifying the most discrim-
inative features w.r.t. a collection of tags. Importantly, this
separation of visual and tag data naturally solves the dimen-
sionality discrepancy challenge. Moreover, HML-RF bene-
fits from the feature selection mechanism inherent to ran-
dom forest for coping with the noisy visual data problem
by selecting the most discriminative localised split functions
(Eqn. (1)) over multiple tags simultaneously.
Incorporating tag hierarchy. Eqn. (4) implies that all the
tags have similar abstractness in semantics, as all of them are
used in every split node (i.e. a flatten structure of tags). To
further exploit available structural information in tag hierar-
chy, we introduce an adaptive hierarchical multi-label infor-
mation gain function as:

∆ψhml =

µ∑
k=1

k−1∏
j=1

(1− αj)αk
∑
i∈Zk

∆ψisl

 (5)

where Zk denotes the tag index set of the k-th layer in the
tag hierarchy (totally µ layers), with ∪µk=1Zk = Z, and
∀j 6=kZj ∩ Zk = ∅. Binary flag αk ∈ {0, 1} indicates the
impurity of the k-th tag layer, k ∈ {1, . . . , µ}, i.e. αk = 0
when tag values are identical/pure across all the training
samples S of split node s in any tag i ∈ Zk, αk = 1
otherwise. The target layer is k in case that αk = 1 and
∀αj = 0, 0 < j < k.
Discussion: This layer-wise design allows the data partition
optimisation to concentrate on the most abstract and im-
pure tag layer (i.e. the target layer) so that the tag structural
knowledge can be naturally embedded into the top-down
HML-tree growing procedure in an abstract-to-specific fash-
ion. We shall show the empirical effectiveness of this layer-
wise information gain design in our experiments.
Handling tag sparseness and incompleteness. We further
improve the HML-RF model by employing tag statistical
correlations for addressing tag sparseness problem, as fol-
lows: We wish to utilise the dependences among tags to in-
fer missing tags with a confidence measure (continuous soft
tags), and exploit them along with labelled (binary hard) tags
in localised split node optimisation, e.g. Eqn. (3) and (5).

In particular, two tag correlations are considered: co-
occurrence - often co-occur in the same video thus posi-
tively correlated, and mutual-exclusion - rarely simultane-
ously appear so negatively correlated. They are comple-
mentary to each other, since for a particular sample, co-
occurrence helps predict the presence degree of some miss-
ing tag based on another often co-occurrent tag who is la-
belled, whilst mutual-exclusion can estimate the absence de-
gree of a missing tag according to its negative relation with
another labelled tag. Therefore, we infer tag positive {ŷ+.,i}
and negative {ŷ−.,i} confidence scores based upon tag co-
occurrent and mutual-exclusive correlations, respectively. In
our layered optimisation, we restrict the notion of missing
tag to videos Smiss = {x̊} where no tag in the target layer is
labelled, and consider cross-layer tag correlations consider-
ing that a hierarchy is typically shaped as a pyramid, with
more specific tag categories at lower layers where likely



more labelled tags are available. Suppose we compute the
correlations between the tag i ∈ Zk (the target tag layer)
and the tag j ∈ {Zk+1, . . . , Zµ} (subordinate tag layers).
Co-occurrence: We compute the co-occurrence %i,j as

%i,j = coi,j/oj , (6)

where coi,j denotes the co-occurrence frequency of tags i
and j, that is, occurrences when both tags simultaneously
appear in the same video across all samples; and oj denotes
the number of occurrences of tag j over all samples. The de-
nominator oj here is used to down-weight over-popular tags
j: Those often appear across the dataset, and their existence
thus gives a weak positive cue of supporting the simultane-
ous presence of tag i. Once %i,j is obtained, for a potentially
missing tag i ∈ Zk of x̊ ∈ Smiss, we estimate its positive
score ŷ+·,i via:

ŷ+·,i =
∑

j∈{Zk+1,...,Zµ}

%i,jy·,j (7)

where y·,j refers to the j-th tag value of x̊. With Eqn. (7),
we accumulate the positive support from all labelled subor-
dinate tags to estimate the presence confidence of tag i.
Mutual-exclusion: We calculate this negative correlation as

εi,j = max(0, r−+i,j − r
−
i )/(1− r−i ), (8)

where r−i refers to the negative sample percentage on tag i
across all samples, and r−+i,j the negative sample percentage
on tag i over samples with positive tag j. The denominator
(1 − r−i ) is the normalisation factor. Hence, εi,j is approx-
imated statistically as the relative increase in negative sam-
ple percentage on tag i given positive tag j. This definition
reflects statistical exclusive degree of tag j against tag i nat-
urally. The cases of ε < 0 are not considered since they are
already measured in the co-occurrence. Similarly, we predict
the negative score ŷ−·,i for x on tag i with:

ŷ−·,i =
∑

j∈{Zk+1,...,Zµ}

εi,jy·,j , (9)

Finally, we normalise both ŷ+·,i and ŷ−·,i, i ∈ Zp, into the
unit range [0, 1].
Inducing data affinity from a trained HML-RF model.
Recall that our HML-RF model is designed to measure pair-
wise proximity between samples (Fig. 1(c)). This is inspired
by clustering forests (Breiman 2001; Shi and Horvath 2006).
Specifically, the t-th (t ∈ {1, . . . , τ}) HML-tree partitions
the training samples at its leaves. We assign pairwise sim-
ilarity 1 for sample pair (xi, xj) if they fall into the same
leaf, and 0 otherwise. This results in a tree-level affinity ma-
trix At. A smooth affinity matrix A can be obtained through:
A = 1

τ

∑τ
t=1 A

t, with τ the tree number of HML-RF. In-
tuitively, the multi-modality learning strategies of HML-RF
enable its data similarity measure to be much more mean-
ingful. This can benefit significantly video clustering using
a graph-based clustering method, e.g. spectral clustering (Ng
et al. 2002) which is utilised in this work.

Experiments
Dataset. We used the TRECVID MED 2011 dataset (Over
et al. 2011) to evaluate the efficacy of the proposed
HML-RF model for tag-based video clustering. Particularly,
TRECVID MED 2011 includes 2379 video samples from
15 categories: ‘board trick’, ‘feeding animal’, etc. We aim
to group these videos into the above categories as in (Zhou
et al. 2013; Vahdat, Zhou, and Mori 2014). This dataset is
challenging for clustering using only visual features, in that
videos with the same concepts can present significant va-
riety/dynamics in visual appearance. This necessitates the
assistance of other data modalities, e.g. textual meta-data.
Visual features. For TRECVID MED 2011, we used
HOG3D features (Klaser, Marszałek, and Schmid 2008) as
visual representation of videos. In particular, we first gener-
ated a codebook of 1000 words using Kmeans (Jain 2010).
With this codebook, we created a histogram feature vector
for each video. Finally, the approximated Histogram Inter-
section Kernel via feature extension (Vedaldi and Zisserman
2012) was adopted to further enhance the expressive capa-
bility of visual features.
Tags and hierarchy. Automatically extracted tags from the
textual meta-data, e.g. the judgement files associated with
video samples, are utilised (Vahdat, Zhou, and Mori 2014).
A total of 114 tags were obtained and used in our evalua-
tion. We established the tag hierarchy according to the struc-
ture presented in the meta-data files where two levels of ab-
stractness: holistic (e.g. event) and specific (e.g. object) con-
cepts. Averagely, ∼ 4 tags were extracted per video, thus
very sparse with many unknown missing tags.
Input data modes. For comparison, we tested four modes
of input data: (1) ViFeat: Videos are represented by HOG3D
visual features; (2) BiTag: Binary tag vectors are used in-
stead of visual features; (3) DetScore (Vahdat, Zhou, and
Mori 2014): Tag classifiers (e.g. SVM) are trained for in-
dividual tags using the available tags with HOG3D visual
features and their detection scores are then used as model
input1; (4) ViFeat&BiTag: Both the visual and tag data are
utilised. More specifically, the two modalities may be com-
bined into one single feature vector (called V&T-cmb), or
modelled separately in some balanced way (called V&T-
bln), depending on the design nature of specific methods.
Baseline models. we extensively compared our HML-RF
model against 10 existing and state-of-the-arts clustering
methods: (1) Kmeans (Jain 2010); (2) Spectral Clustering
(SpClust) (Ng et al. 2002): For ViFeat&BiTag mode, the av-
eraging over separate normalised affinity matrices of visual
and tag data (SpClust-Av) was also evaluated, in addition
to the combined single feature (SpClust-Cmb); (3) Affinity
Propagation (AffProp) (Frey and Dueck 2007); (4) Cluster-
ing Random Forest (ClustRF) (Breiman 2001; Shi and Hor-
vath 2006): It was used to generate the data affinity ma-
trix, followed by SpClust for obtaining the final clusters; (5)
Constrained-Clustering Forest (CC-Forest) (Zhu, Loy, and
Gong 2013b; 2015b): A state-of-the-art multi-modality data

1We only compared the reported results in (Vahdat, Zhou, and
Mori 2014) since we cannot reimplement the exact evaluation set-
ting due to the lack of experimental details.



Table 1: Comparing clustering models on TRECVID MED 2011.
Input Method Purity NMI RI F1 ARI

Visual

Kmeans(Jain 2010) 0.26 0.19 0.88 0.14 0.08
SpClust(Ng et al. 2002) 0.25 0.20 0.88 0.15 0.07
ClustRF(Breiman 2001) 0.23 0.17 0.87 0.14 0.08

AffProp(Frey and Dueck 2007) 0.23 0.16 0.87 0.14 0.07
MMC(Xu et al. 2004) 0.25 0.19 0.88 0.14 0.09

BiTag

Kmeans(Jain 2010) 0.51 0.52 0.86 0.30 0.23
SpClust(Ng et al. 2002) 0.71 0.73 0.93 0.56 0.60
ClustRF(Breiman 2001) 0.77 0.81 0.94 0.64 0.60

AffProp(Frey and Dueck 2007) 0.50 0.44 0.87 0.28 0.21
MMC(Xu et al. 2004) 0.76 0.72 0.95 0.64 0.60

DetScore

Kmeans(Jain 2010) 0.63 0.60 0.93 0.50 -
SpClust(Ng et al. 2002) 0.82 0.76 0.96 0.69 -
MMC(Xu et al. 2004) 0.83 0.78 0.96 0.73 -

L-MMC(Zhou et al. 2013) 0.86 0.82 0.97 0.79 -

V&T-cmb

Kmeans(Jain 2010) 0.51 0.49 0.90 0.34 0.24
SpClust-cmb(Ng et al. 2002) 0.76 0.74 0.94 0.62 0.66

ClustRF(Breiman 2001) 0.23 0.17 0.87 0.15 0.08
AffProp(Frey and Dueck 2007) 0.51 0.46 0.86 0.29 0.21

V&T-bln

SpClust-bln(Ng et al. 2002) 0.75 0.72 0.95 0.62 0.59
CC-Forest(Zhu, Loy, and Gong 2013b) 0.41 0.33 0.89 0.41 0.19

AASC(Huang, Chuang, and Chen 2012) 0.30 0.15 0.87 0.13 0.06
MMC(Xu et al. 2004) 0.79 0.72 0.95 0.66 0.66

S-MMC(Vahdat, Zhou, and Mori 2014) 0.87 0.84 0.97 0.79 -
F-MMC(Vahdat, Zhou, and Mori 2014) 0.90 0.88 0.98 0.84 -

HML-RF(Ours) 0.94 0.90 0.98 0.88 0.87

based clustering forest characterised by joint learning of het-
erogeneous data; (6) Affinity Aggregation for Spectral Clus-
tering (AASC) (Huang, Chuang, and Chen 2012): A state-
of-the-art multi-modal spectral clustering method; (7) Max-
imum Margin Clustering (MMC) (Xu et al. 2004); (8) Latent
Maximum Margin Clustering (L-MMC) (Zhou et al. 2013):
An extended MMC model that allows to accommodate la-
tent variables, e.g. tag labels, during maximum cluster mar-
gin learning; (9) Structural MMC (S-MMC) (Vahdat, Zhou,
and Mori 2014): A variant of MMC model assuming struc-
tured tags are labelled on data samples; (10) Flip MMC (F-
MMC) (Vahdat, Zhou, and Mori 2014): The state-of-the-art
tag based video clustering method capable of handling the
missing tag problem, beyond S-MMC.
Evaluation metrics. We adopted five metrics to evaluate the
clustering accuracy: (1) Purity (Zhou et al. 2013), which
calculates the averaged accuracy of the dominating class
in each cluster; (2) Normalised Mutual Information (NMI)
(Vinh, Epps, and Bailey 2009), which considers the mutual
dependence between the predicted and ground-truth parti-
tions; (3) Rand Index (RI) (Rand 1971), which measures the
ratio of agreement between two partitions, i.e. true positives
within clusters and true negatives between clusters; (4) Ad-
justed Rand Index (ARI) (Steinley 2004), an adjusted form
of RI that additionally considers disagreement; (5) balanced
F1 score (F1) (Jardine and van Rijsbergen 1971), which uni-
formly measures both precision and recall. All metrics lie in
[0, 1] except ARI in [−1, 1]. For each, higher values indicate
better performance.

Implementation details. The forest size τ was fixed to 1000
for all forest variants. The depth of each tree was automat-
ically determined by setting the sample number in the leaf
node, φ, which we set to 3 throughout our experiments. We
set νtry =

√
d with d the data feature dimension (Eqn. (2)).

For fair comparison, we used the exactly same number of
clusters, visual features and tag data in all methods.
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Figure 2: Clustering performance of compared methods at
different ratios of tag sparseness. Metric: NMI.

Table 2: Comparing the relative drop of top-3 models, given
different tag sparseness rates. Metric: NMI.

Sparseness (%) 10 15 20 25
SpClust(Ng et al. 2002) 0.11 0.19 0.24 0.31
MMC(Xu et al. 2004) 0.12 0.21 0.24 0.31
HML-RF(Ours) 0.07 0.12 0.16 0.19



Table 3: Comparing clustering models on NUS-WIDE.
Input Method Purity NMI RI F1 ARI

V&T-bln

SpClust-bln(Ng et al. 2002) 0.71 0.73 0.91 0.50 0.46
CC-Forest(Zhu, Loy, and Gong 2013b) 0.23 0.23 0.86 0.13 0.05

AASC(Huang, Chuang, and Chen 2012) 0.26 0.10 0.86 0.13 0.05
MMC(Xu et al. 2004) 0.24 0.11 0.88 0.13 0.06

HML-RF(Ours) 0.83 0.80 0.96 0.74 0.72

Clustering Evaluation
We evaluated the effectiveness of different models for tag-
based video clustering, using the full tag data along with
visual features. The results are reported in Table 1. Given
the visual features alone, all clustering methods produce
poor results, e.g. the best NMI is 0.20, achieved by SpClust.
Whereas binary tags provide much more information about
the underlying video data structure than visual modality, e.g.
all models can double their scores or even more in most met-
rics. Interestingly, using the detection scores can lead to even
better results than the original binary tags. The plausible rea-
son is that missing tags can be partially recovered after using
detection scores. When using both modalities, we observe
superior results than either single modality with many meth-
ods like SpClust, AffProp, MMC. This confirms the overall
benefits from jointly learning visual and tag data.

For the performance of individual methods, the proposed
HML-RF model evidently provides the best results by a sig-
nificant margin over the second best Flip MMC in most met-
rics. This is resulted from the joint exploitation of interac-
tions between visual and tag data, tag hierarchical structure,
and tag correlations with a unified HML-RF model, com-
pared to MMC and its variants wherein tags are exploited in
a flat organisation and no tag dependences are considered.
Kmeans hardly benefits from the combination of visual and
tag data, due to its single distance function based grouping
mechanism therefore is very restricted in jointly exploiting
multi-modality data.

Among all affinity based models, ClustRF is surprisingly
dominated by visual data when using visual features & tag
as input. This may be because that visual features with large
variances may be mistakenly considered as optimum due to
larger information gain induced on them. CC-Forest suffers
less by separately exploiting the two modalities, but still in-
ferior than HML-RF due to ignoring the intrinsic tag struc-
ture and the sparseness challenge. AASC yields much poorer
clustering results than HML-RF, suggesting that the con-
struction of individual affinity matrices can lose significant
information, e.g. the interactions between the visual and tag
data, as well as the tag correlations. AffProp and SpClust
also suffer from the heteroscedasticity problem due to the
input affinity matrix is constructed from the heterogeneous
concatenation of visual and tag data and thus ineffective to
exploit the knowledge embedded across modalities and in
tag statistical relationships.
Comparing Robustness against Tag Sparseness. We con-
ducted a scalability evaluation against tag sparseness and in-
completeness. This is significant since we may have access
to merely a small size of tags in many practical settings. To

simulate these scenarios, we randomly removed varying ra-
tios (5 ∼ 25%) of tag data. We utilised both visual and tag
data as model input since most methods can benefit from us-
ing both2. The most common metric NMI (Jain 2010) was
used in this experiment.

The experimental results are compared in Fig. 2. Given
less amount of tags, we can observe a clear performance
drop trend across most models. Numerically, the relative
drops of HML-RF are significantly smaller than those most
competitive (top-2) models, e.g. MMC and SpClust (Table
2). Whilst the remaining are slightly affected by tag sparse-
ness, in that these methods are very ineffective in exploiting
tag data and thus less sensitive.

Further Evaluation

We additionally evaluated the HML-RF model on the tagged
NUS-WIDE image dataset (Chua et al. 2009) with the re-
leased visual features and 1000 tags. A subset of 14 ran-
domly selected categories was utilised. We built a 2-layer tag
hierarchy by Kmeans. It is evident from Table 3 that HML-
RF achieves the best results.

Conclusion
We presented an unsupervised tag based video semantic
clustering framework by formulating a novel Hierarchical-
Multi-Label Random Forest model for jointly exploiting het-
erogeneous visual and tag data. The proposed forest model,
which is defined by a new information gain function, en-
ables to naturally incorporate tag abstractness hierarchy and
effectively exploit multiple tag statistical correlations, be-
yond modelling the intrinsic interactions between visual and
tag modalities. Extensive comparative evaluations on clus-
tering challenging tagged videos and images have demon-
strated the advantages of the proposed model over a wide
range of existing and state-of-the-art clustering models.
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