7 research outputs found

    Capturing Hiproofs in HOL Light

    Full text link
    Hierarchical proof trees (hiproofs for short) add structure to ordinary proof trees, by allowing portions of trees to be hierarchically nested. The additional structure can be used to abstract away from details, or to label particular portions to explain their purpose. In this paper we present two complementary methods for capturing hiproofs in HOL Light, along with a tool to produce web-based visualisations. The first method uses tactic recording, by modifying tactics to record their arguments and construct a hierarchical tree; this allows a tactic proof script to be modified. The second method uses proof recording, which extends the HOL Light kernel to record hierachical proof trees alongside theorems. This method is less invasive, but requires care to manage the size of the recorded objects. We have implemented both methods, resulting in two systems: Tactician and HipCam

    Querying Proofs (Work in Progress)

    Get PDF
    We motivate and introduce the basis for a query language designed for inspecting electronic representations of proofs. We argue that there is much to learn from large proofs beyond their validity, and that a dedicated query language can provide a principled way of implementing a family of useful operations

    Towards Formal Proof Script Refactoring

    Get PDF

    Refactoring proofs

    Get PDF
    Refactoring is an important Software Engineering technique for improving the structure of a program after it has been written. Refactorings improve the maintainability, readability, and design of a program without affecting its external behaviour. In analogy, this thesis introduces proof refactoring to make structured, semantics preserving changes to the proof documents constructed by interactive theorem provers as part of a formal proof development. In order to formally study proof refactoring, the first part of this thesis constructs a proof language framework, Hiscript. The Hiscript framework consists of a procedural tactic language, a declarative proof language, and a modular theory language. Each level of this framework is equipped with a formal semantics based on a hierarchical notion of proof trees. Furthermore, this framework is generic as it does not prescribe an underlying logical kernel. This part contributes an investigation of semantics for formal proof documents, which is proved to construct valid proofs. Moreover, in analogy with type-checking, static well-formedness checks of proof documents are separated from evaluation of the proof. Furthermore, a subset of the SSReflect language for Coq, called eSSence, is also encoded using hierarchical proofs. Both Hiscript and eSSence are shown to have language elements with a natural hierarchical representation. In the second part, proof refactoring is put on a formal footing with a definition using the Hiscript framework. Over thirty refactorings are formally specified and proved to preserve the semantics in a precise way for the Hiscript language, including traditional structural refactorings, such as rename item, and proof specific refactorings such as backwards proof to forwards proof and declarative to procedural. Finally, a concrete, generic refactoring framework, called Polar, is introduced. Polar is based on graph rewriting and has been implemented with over ten refactorings and for two proof languages, including Hiscript. Finally, the third part concludes with some wishes for the future
    corecore