3,667 research outputs found
Steps toward accurate large-area analyses of Genesis solar wind samples: evaluation of surface cleaning methods using total reflection X-ray fluorescence spectrometry
Total reflection X-ray fluorescence spectrometry (TXRF) was used to analyze residual surface contamination on Genesis solar wind samples and to evaluate different cleaning methods. To gauge the suitability of a cleaning method, two samples were analyzed following cleaning by lab-based TXRF. The analysis comprised an overview and a crude manual mapping of the samples by orienting them with respect to the incident X-ray beam in such a way that different regions were covered. The results show that cleaning with concentrated hydrochloric acid and a combination of hydrochloric acid and hydrofluoric acid decreased persistent inorganic contaminants substantially on one sample. The application of CO2 snow for surface cleaning tested on the other sample appears to be effective in removing one persistent Genesis contaminant, namely germanium. Unfortunately, the TXRF analysis results of the second sample were impacted by relatively high background contamination. This was mostly due to the relatively small sample size and that the solar wind collector was already mounted with silver glue for resonance ion mass spectrometry (RIMS) on an aluminium stub. Further studies are planned to eliminate this problem. In an effort to identify the location of very persistent contaminants, selected samples were also subjected to environmental scanning electron microscopy. The results showed excellent agreement with TXRF analysis
Age-related cellular copper dynamics in the fungal ageing model Podospora anserina and in ageing human fibroblasts
In previous investigations an impact of cellular copper homeostasis on ageing of the ascomycete Podospora anserina has been demonstrated. Here we provide new data indicating that mitochondria play a major role in this process. Determination of copper in the cytosolic fraction using total reflection X-ray fluorescence spectroscopy analysis and eGfp reporter gene studies indicate an age-related increase of cytosolic copper levels. We show that components of the mitochondrial matrix (i.e. eGFP targeted to mitochondria) become released from the organelle during ageing. Decreasing the accessibility of mitochondrial copper in P. anserina via targeting a copper metallothionein to the mitochondrial matrix was found to result in a switch from a copper-dependent cytochrome-c oxidase to a copper-independent alternative oxidase type of respiration and results in lifespan extension. In addition, we demonstrate that increased copper concentrations in the culture medium lead to the appearance of senescence biomarkers in human diploid fibroblasts (HDFs). Significantly, expression of copper-regulated genes is induced during in vitro ageing in medium devoid of excess copper suggesting that cytosolic copper levels also increase during senescence of HDFs. These data suggest that the identified molecular pathway of age-dependent copper dynamics may not be restricted to P. anserina but may be conserved from lower eukaryotes to humans
Characterization of sub-monolayer coatings as novel calibration samples for X-ray spectroscopy
With the advent of both modern X-ray fluorescence (XRF) methods and improved
analytical reliability requirements the demand for suitable reference samples
has increased. Especially in nanotechnology with the very low areal mass
depositions, quantification becomes considerably more difficult. However, the
availability of suited reference samples is drastically lower than the demand.
Physical vapor deposition (PVD) techniques have been enhanced significantly in
the last decade driven by the need for extremely precise film parameters in
multilayer production. We have applied those techniques for the development of
layer-like reference samples with mass depositions in the ng-range and well
below. Several types of reference samples were fabricated: multi-elemental
layer and extremely low (sub-monolayer) samples for various applications in XRF
and total-reflection XRF (TXRF) analysis. Those samples were characterized and
compared at three different synchrotron radiation beamlines at the BESSY II
electron storage ring employing the reference-free XRF approach based on
physically calibrated instrumentation. In addition, the homogeneity of the
multi-elemental coatings was checked at the P04 beamline at DESY. The
measurements demonstrate the high precision achieved in the manufacturing
process as well as the versatility of application fields for the presented
reference samples
Chemical composition, antioxidant and alpha-Glucosidase-Inhibiting activities of the aqueous and hydroethanolic extracts of Vaccinium myrtillus Leaves
Vaccinium myrtillus (bilberry) leaf is traditionally used in southeastern Europe for the treatment of diabetes. In the present study, the ability of bilberry leaf extracts to inhibit carbohydrate-hydrolyzing enzymes and restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress was investigated. A comprehensive analysis of the antioxidant activity of two bilberry leaf extracts was performed. The aqueous extract showed excellent total antioxidant and chelating activity. Its antioxidant activity in the beta-carotene-linoleic acid assay was very good, reaching the activity of the antioxidant standard BHA (93.4 +/- 2.3% vs. 95.1 +/- 2.4%, respectively). The hydroethanolic extract (ethanol/H2O, 8:2, v/v), on the other hand, was a better radical scavenger and Fe2+ reducing agent. Furthermore, the aqueous extract was able to efficiently increase glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress and restore it to the levels observed in non-hyperglycaemic cells. The hydroethanolic extract strongly inhibited alpha-glucosidase, with the IC50 statistically equal to the antidiabetic drug acarbose (0.29 +/- 0.02 mg/mL vs. 0.50 +/- 0.01 mg/mL, respectively). Phytochemical analysis revealed the presence of quercetin and kaemferol derivatives, as well as chlorogenic and p-coumaric acid. The study results indicate that V. myrtillus leaf may have promising properties as a supporting therapy for diabetes.University of Zagrebinfo:eu-repo/semantics/publishedVersio
Az energiaszektor légköri kibocsátásának éghajlati hatása szempontjából fontos primer és szekunder aeroszolok jellemzése = Characterization of primary and secondary aerosols relevant for climate effect of the atmospheric emissions of the energy sector
Az aeroszolrészecskék kémiai összetételének, morfológiájának és heterogenitásának jellemzése érdekében nagyérzékenységű roncsolásmentes mikroanalitikai módszereket fejlesztettünk és alkalmaztunk; a méret szerint frakcionált aeroszol nyomelemtartalmának meghatározásához totálreflexiós röntgenfluoreszcencia-analízist, az ammónium és nitrát mólarányának meghatározásához, valamint a szén és a cink kémiai állapotának vizsgálatához totálreflexiós geometriájú röntgenabszorpciós spektroszkópiát, egyedi részecskék morfológiájának és heterogenitásának jellemzéséhez elektronmikroszkópos méréseket. Kidolgoztuk a velük harmonizáló méret szerint frakcionált aeroszol-mintavételi technikát, lehetővé téve ugyanazon minta mérését mindhárom módszerrel. Megfelelően alacsony kimutatási határuk (< 1 ng/m3) miatt nagyon rövid mintavételi időkkel gyorsan változó légköri folyamatok nyomonkövetését teszik lehetővé. A módszerek teljesítőképességének bemutatását és a projekt keretében vett aeroszol-mintákon való alkalmazását kiegészítettük a másodlagos aeroszol keletkezését figyelembe vevő modellszámításokkal, a koncentrációk és az aeroszol optikai vastagság összevetésével, valamint kutatórepülőgépes mérésekkel. | In order to characterize chemical composition, morphology and heterogeneity of aerosol particles, highly sensitive non-destructive microanalytical methods were developed and applied. Total reflection X-ray fluorescence analysis was used for determination of trace elemental composition of size fractionated aerosol. X-ray absorption spectrometry was used for determination of the molar ratio of ammonium and nitrate, as well as for studying the chemical state of carbon and zinc. A sampling technique was elaborated that harmonizes with the microanalytical methods and allows the collection of size fractionated aerosols. This technique enables the measurement of the same samples with the three microanalytical methods. Because of the sufficiently low detection limits (< 1 ng/m3), the techniques are suitable for tracing of rapidly changing atmospheric processes using extremely short sampling durations. In addition to demonstration of the capabilities of the methods and their application to aerosol samples collected in the framework of the project, atmospheric dispersion model calculations were performed, taking into account the formation of secondary aerosols. The concentrations were compared with aerosol optical thickness data. The sampling apparatus was also tested during research aircraft missions
Identification of YdhV as the first molybdoenzyme binding a Bis-Mo-MPT cofactor in escherichia coli
The oxidoreductase YdhV in Escherichia coli has been predicted to belong to the family of molybdenum/tungsten cofactor (Moco/Wco)-containing enzymes. In this study, we characterized the YdhV protein in detail, which shares amino acid sequence homology with a tungsten-containing benzoyl-CoA reductase binding the bis-W-MPT (for metal-binding pterin) cofactor. The cofactor was identified to be of a bis-Mo-MPT type with no guanine nucleotides present, which represents a form of Moco that has not been found previously in any molybdoenzyme. Our studies showed that YdhV has a preference for bis-Mo-MPT over bis-W-MPT to be inserted into the enzyme. In-depth characterization of YdhV by X-ray absorption and electron paramagnetic resonance spectroscopies revealed that the bis-Mo-MPT cofactor in YdhV is redox active. The bis-Mo-MPT and bis-W-MPT cofactors include metal centers that bind the four sulfurs from the two dithiolene groups in addition to a cysteine and likely a sulfido ligand. The unexpected presence of a bis-Mo-MPT cofactor opens an additional route for cofactor biosynthesis in E. coli and expands the canon of the structurally highly versatile molybdenum and tungsten cofactors
Resonance ionization of sputtered atoms-progress toward a quantitative technique
The combination of RIMS and ion sputtering has been heralded as the ideal means of quantitatively probing the surface of a solid. While several laboratories have demonstrated the extreme sensitivity of combining RIMS with sputtering, less effort has been devoted to the question of accuracy. Using the SARISA instrument developed at Argonne National Laboratory, a number of well-characterized metallic
samples have been analyzed. Results from these determinations have been compared with data obtained by several other analytical methods. One significant finding is that impurity measurements down to ppb levels in metal matrices can be made quantitative by employing polycrystalline metal foils as calibration standards. This discovery substantially reduces the effort required for quantitative analysis since a single standard can be used for determining concentrations spanning nine orders of magnitude
- …
