5,024 research outputs found

    Satellite-based delivery of educational content to geographically isolated communities: A service based approach

    Get PDF
    Enabling learning for members of geographically isolated communities presents benefits in terms of promoting regional development and cost savings for governments and companies. However, notwithstanding recent advances in e-Learning, from both technological and pedagogical perspectives, there are very few, if any, recognised methodologies for user-led design of satellite-based e-learning infrastructures. In this paper, we present a methodology for designing a satellite and wireless based network infrastructure and learning services to support distance learning for such isolated communities. This methodology entails (a) the involvement of community members in the development of targeted learning services from an early stage, and (b) a service-oriented approach to learning solution deployment. Results show, that, while the technological premises of distance learning can be accommodated by hybrid satellite/wireless infrastructures,this has to be complemented with (a) high-quality audio–visual educational material, and (b) the opportunity for community members to interact with other community members either as groups (common-room oriented scenarios) or individuals (home-based scenarios), thus providing an impetus for learner engagement in both formal and informal activities

    Enhancing Social Sharing of Videos: Fragment, Annotate, Enrich, and Share

    Get PDF
    Media consumption is an inherently social activity, serving to communicate ideas and emotions across both small- and large-scale communities. The migration of the media experience to personal computers retains social viewing, but typically only via a non-social, strictly personal interface. This paper presents an architecture and implementation for media content selection, content (re)organization, and content sharing within a user community that is heterogeneous in terms of both participants and devices. In addition, our application allows the user to enrich the content as a differentiated personalization activity targeted to his/her peer-group. We describe the goals, architecture and implementation of our system in this paper. In order to validate our results, we also present results from two user studies involving disjoint sets of test participants

    Content Delivery System for Optimal VoD Streaming

    Full text link
    The demand of video contents has rapidly increased in the past years as a result of the wide deployment of IPTV and the variety of services offered by the network operators. One of the services that has especially become attractive to the customers is real-time video on demand (VoD) because it offers an immediate streaming of a large variety of video contents. The price that the operators have to pay for this convenience is the increased traffic in the networks, which are becoming more congested due to the higher demand for VoD contents and the increased quality of the videos. As a solution, in this paper we propose a hierarchical network system for VoD content delivery in managed networks, which implements redistribution algorithm and a redirection strategy for optimal content distribution within the network core and optimal streaming to the clients. The system monitors the state of the network and the behavior of the users to estimate the demand for the content items and to take the right decision on the appropriate number of replicas and their best positions in the network. The system's objectives are to distribute replicas of the content items in the network in a way that the most demanded contents will have replicas closer to the clients so that it will optimize the network utilization and will improve the users' experience. It also balances the load between the servers concentrating the traffic to the edges of the network

    BIBS: A Lecture Webcasting System

    Get PDF
    The Berkeley Internet Broadcasting System (BIBS) is a lecture webcasting system developed and operated by the Berkeley Multimedia Research Center. The system offers live remote viewing and on-demand replay of course lectures using streaming audio and video over the Internet. During the Fall 2000 semester 14 classes were webcast, including several large lower division classes, with a total enrollment of over 4,000 students. Lectures were played over 15,000 times per month during the semester. The primary use of the webcasts is to study for examinations. Students report they watch BIBS lectures because they did not understand material presented in lecture, because they wanted to review what the instructor said about selected topics, because they missed a lecture, and/or because they had difficulty understanding the speaker (e.g., non-native English speakers). Analysis of various survey data suggests that more than 50% of the students enrolled in some large classes view lectures and that as many as 75% of the lectures are played by members of the Berkeley community. Faculty attitudes vary about the virtues of lecture webcasting. Some question the use of this technology while others believe it is a valuable aid to education. Further study is required to accurately assess the pedagogical impact that lecture webcasts have on student learning

    Strategies and challenges to facilitate situated learning in virtual worlds post-Second Life

    Get PDF
    Virtual worlds can establish a stimulating environment to support a situated learning approach in which students simulate a task within a safe environment. While in previous years Second Life played a major role in providing such a virtual environment, there are now more and more alternative—often OpenSim-based—solutions deployed within the educational community. By drawing parallels to social networks, we discuss two aspects: how to link individually hosted virtual worlds together in order to implement context for immersion and how to identify and avoid “fake” avatars so people behind these avatars can be held accountable for their actions

    Crowdsourced Live Streaming over the Cloud

    Full text link
    Empowered by today's rich tools for media generation and distribution, and the convenient Internet access, crowdsourced streaming generalizes the single-source streaming paradigm by including massive contributors for a video channel. It calls a joint optimization along the path from crowdsourcers, through streaming servers, to the end-users to minimize the overall latency. The dynamics of the video sources, together with the globalized request demands and the high computation demand from each sourcer, make crowdsourced live streaming challenging even with powerful support from modern cloud computing. In this paper, we present a generic framework that facilitates a cost-effective cloud service for crowdsourced live streaming. Through adaptively leasing, the cloud servers can be provisioned in a fine granularity to accommodate geo-distributed video crowdsourcers. We present an optimal solution to deal with service migration among cloud instances of diverse lease prices. It also addresses the location impact to the streaming quality. To understand the performance of the proposed strategies in the realworld, we have built a prototype system running over the planetlab and the Amazon/Microsoft Cloud. Our extensive experiments demonstrate that the effectiveness of our solution in terms of deployment cost and streaming quality
    • …
    corecore