2 research outputs found

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements

    TRSWA-BP Neural Network for Dynamic Wind Power Forecasting Based on Entropy Evaluation

    No full text
    The performance evaluation of wind power forecasting under commercially operating circumstances is critical to a wide range of decision-making situations, yet difficult because of its stochastic nature. This paper firstly introduces a novel TRSWA-BP neural network, of which learning process is based on an efficiency tabu, real-coded, small-world optimization algorithm (TRSWA). In order to deal with the strong volatility and stochastic behavior of the wind power sequence, three forecasting models of the TRSWA-BP are presented, which are combined with EMD (empirical mode decomposition), PSR (phase space reconstruction), and EMD-based PSR. The error sequences of the above methods are then proved to have non-Gaussian properties, and a novel criterion of normalized Renyi’s quadratic entropy (NRQE) is proposed, which can evaluate their dynamic predicted accuracy. Finally, illustrative predictions of the next 1, 4, 6, and 24 h time-scales are examined by historical wind power data, under different evaluations. From the results, we can observe that not only do the proposed models effectively revise the error due to the fluctuation and multi-fractal property of wind power, but also that the NRQE can reserve its feasible assessment upon the stochastic predicted error
    corecore