10 research outputs found

    Improved versions of the bees algorithm for global optimisation

    Get PDF
    This research focuses on swarm-based optimisation algorithms, specifically the Bees Algorithm. The Bees Algorithm was inspired by the foraging behaviour of honey bees in nature. It employs a combination of exploration and exploitation to find the solutions of optimisation problems. This thesis presents three improved versions of the Bees Algorithm aimed at speeding up its operation and facilitating the location of the global optimum. For the first improvement, an algorithm referred to as the Nelder and Mead Bees Algorithm (NMBA) was developed to provide a guiding direction during the neighbourhood search stage. The second improved algorithm, named the recombination-based Bees Algorithm (rBA), is a variant of the Bees Algorithm that utilises a recombination operator between the exploited and abandoned sites to produce new candidates closer to optimal solutions. The third improved Bees Algorithm, called the guided global best Bees Algorithm (gBA), introduces a new neighbourhood shrinking strategy based on the best solution so far for a more effective exploitation search and develops a new bee recruitment mechanism to reduce the number of parameters. The proposed algorithms were tested on a set of unconstrained numerical functions and constrained mechanical engineering design problems. The performance of the algorithms was compared with the standard Bees Algorithm and other swarm based algorithms. The results showed that the improved Bees Algorithms performed better than the standard Bees Algorithm and other algorithms on most of the problems tested. Furthermore, the algorithms also involve no additional parameters and a reduction on the number of parameters as well

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Enhancing the bees algorithm using the traplining metaphor

    Get PDF
    This work aims to improve the performance of the Bees Algorithm (BA), particularly in terms of simplicity, accuracy, and convergence. Three improvements were made in this study as a result of bees’ traplining behaviour. The first improvement was the parameter reduction of the Bees Algorithm. This strategy recruits and assigns worker bees to exploit and explore all patches. Both searching processes are assigned using the Triangular Distribution Random Number Generator. The most promising patches have more workers and are subject to more exploitation than the less productive patches. This technique reduced the original parameters into two parameters. The results show that the Bi-BA is just as efficient as the basic BA, although it has fewer parameters. Following that, another improvement was proposed to increase the diversification performance of the Combinatorial Bees Algorithm (CBA). The technique employs a novel constructive heuristic that considers the distance and the turning angle of the bees’ flight. When foraging for honey, bees generally avoid making a sharp turn. By including this turning angle as the second consideration, it can control CBA’s initial solution diversity. Third, the CBA is strengthened to enable an intensification strategy that avoids falling into a local optima trap. The approach is based on the behaviour of bees when confronted with threats. They will keep away from re-visiting those flowers during the next bout for reasons like predators, rivals, or honey run out. The approach will remove temporarily threatened flowers from the whole tour, eliminating the sharp turn, and reintroduces them again to the habitual tour’s nearest edge. The technique could effectively achieve an equilibrium between exploration and exploitation mechanisms. The results show that the strategy is very competitive compared to other population-based nature-inspired algorithms. Finally, the enhanced Bees Algorithms are demonstrated on two real-world engineering problems, namely, Printed Circuit Board insertion sequencing and vehicles routing problem

    Enhancing the Bees algorithm for global optimisation using search space manipulation

    Get PDF
    The aim of this research is to improve the ability of the Bees Algorithm to tackle global optimisation problems. The Bees Algorithm was formulated and inspired by the foraging behaviour of honeybees. The proposed enhancements target the initialisation and global search stages of the algorithm. The reason for this is that the initialisation stage could save efforts by directing the search earlier towards the more promising areas of the search space, leading to a better optimised result. Targeting during the global search is due to the researcher’s belief that the neighbourhood search depends on it and any improvement will positively affect the neighbourhood search. In this research, three enhancements were formulated based on the manipulation of the search space. The first enhancement (BAwSSR) involves continuous and gradual reduction of the search space with different scenarios that vary according to the starting point of reduction. The second enhancement (BADS) deals with the segmentation of search space into independent segments while using two sampling approaches to tackle a wide variety of problems. The third enhancement (BAOSS) also involves the segmentation of search space but divides it into independent segments to increase flexibility in handling a wider range of problems. These proposed algorithms were tested on 24 benchmark functions with a broad range of characteristics. This test involves performance comparisons with the Quick Artificial Bee Colony (qABC) and the Standard Particle Swarm Optimisation 2011 (SPSO2011) algorithms. The obtained test data indicated noticeable improvements with an adequate level of stability over the original Bees Algorithm. The results were supported by the Mann–Whitney significance test, showing the improvements are statically significant for both accuracy and speed. Additionally, the proposed algorithms were tested on two engineering problems that included a comparison with a group of competitor algorithms. However, only the first proposed algorithm (BAwSSR) showed an obvious improvement. The other two algorithms (BADS) and (BAOSS) did not reveal any improvement

    Sustainability in design: now! Challenges and opportunities for design research, education and practice in the XXI century

    Get PDF
    Copyright @ 2010 Greenleaf PublicationsLeNS project funded by the Asia Link Programme, EuropeAid, European Commission

    Semi-automatic liquid filling system using NodeMCU as an integrated Iot Learning tool

    Get PDF
    Computer programming and IoT are the key skills required in Industrial Revolution 4.0 (IR4.0). The industry demand is very high and therefore related students in this field should grasp adequate knowledge and skill in college or university prior to employment. However, learning technology related subject without applying it to an actual hardware can pose difficulty to relate the theoretical knowledge to problems in real application. It is proven that learning through hands-on activities is more effective and promotes deeper understanding of the subject matter (He et al. in Integrating Internet of Things (IoT) into STEM undergraduate education: Case study of a modern technology infused courseware for embedded system course. Erie, PA, USA, pp 1–9 (2016)). Thus, to fulfill the learning requirement, an integrated learning tool that combines learning of computer programming and IoT control for an industrial liquid filling system model is developed and tested. The integrated learning tool uses NodeMCU, Blynk app and smartphone to enable the IoT application. The system set-up is pre-designed for semi-automation liquid filling process to enhance hands-on learning experience but can be easily programmed for full automation. Overall, it is a user and cost friendly learning tool that can be developed by academic staff to aid learning of IoT and computer programming in related education levels and field

    Pivot 2021: Dismantling/Reassembling

    Get PDF
    Pivot is a series of virtual conferences organized by the Pluriversal Design Special Interest Group (SIG) of the Design Research Society (DRS). Pivot’s first edition, PIVOT 2020: Designing a world of many centers, was hosted by the Phyllis M. Taylor Center for Social Innovation and Design Thinking at Tulane University. The 2021 edition was hosted by OCAD University (Toronto, Canada)

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia

    ICEIRD 2011

    Get PDF
    corecore