4,656 research outputs found

    A network-indexbased version of TOPMODEL for use with high-resolution digital topographic data

    Get PDF
    This paper describes the preliminary development of a network index approach to modify and to extend the classic TOPMODEL. Application of the basic Beven and Kirkby (1979) form of TOPMODEL to high resolution (2.0 m) laser altimetric data (based upon the U.K. Environment Agency’s Light Detection and Ranging (LIDAR) system) to a 13.8 km(2) catchment in an upland environment identified large areas of saturated areas that remained unconnected from the drainage network even during an extreme flood event. This is shown to be a particular problem with using high resolution topographic data especially over large spatial scales. To deal with the hydrological consequences of disconnected areas, we present a simple network index modification in which saturated areas only connect when the topographic index is sufficient for there to be zero or negative saturation deficits along a complete flow path. This is combined with an enhanced method for dealing with the problem of pits and hollows which is shown to become more acute with higher resolution topographic data. The paper concludes by noting the implications of the research as presented for both methodological and substantive research that is currently under way

    Framework for Event-based Semidistributed Modeling that Unifies the SCS-CN Method, VIC, PDM, and TOPMODEL

    Get PDF
    Hydrologists and engineers may choose from a range of semidistributed rainfall-runoff models such as VIC, PDM, and TOPMODEL, all of which predict runoff from a distribution of watershed properties. However, these models are not easily compared to event-based data and are missing ready-to-use analytical expressions that are analogous to the SCS-CN method. The SCS-CN method is an event-based model that describes the runoff response with a rainfall-runoff curve that is a function of the cumulative storm rainfall and antecedent wetness condition. Here we develop an event-based probabilistic storage framework and distill semidistributed models into analytical, event-based expressions for describing the rainfall-runoff response. The event-based versions called VICx, PDMx, and TOPMODELx also are extended with a spatial description of the runoff concept of ‘‘prethreshold’’ and ‘‘threshold-excess’’ runoff, which occur, respectively, before and after infiltration exceeds a storage capacity threshold. For total storm rainfall and antecedent wetness conditions, the resulting ready-to-use analytical expressions define the source areas (fraction of the watershed) that produce runoff by each mechanism. They also define the probability density function (PDF) representing the spatial variability of runoff depths that are cumulative values for the storm duration, and the average unit area runoff, which describes the so-called runoff curve. These new event-based semidistributed models and the traditional SCS-CN method are unified by the same general expression for the runoff curve. Since the general runoff curve may incorporate different model distributions, it may ease the way for relating such distributions to land use, climate, topography, ecology, geology, and other characteristics

    Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning

    Get PDF
    The preference scaling of a group of subjects may not be homogeneous, but different groups of subjects with certain characteristics may show different preference scalings, each of which can be derived from paired comparisons by means of the Bradley-Terry model. Usually, either different models are fit in predefined subsets of the sample, or the effects of subject covariates are explicitly specified in a parametric model. In both cases, categorical covariates can be employed directly to distinguish between the different groups, while numeric covariates are typically discretized prior to modeling. Here, a semi-parametric approach for recursive partitioning of Bradley-Terry models is introduced as a means for identifying groups of subjects with homogeneous preference scalings in a data-driven way. In this approach, the covariates that -- in main effects or interactions -- distinguish between groups of subjects with different preference orderings, are detected automatically from the set of candidate covariates. One main advantage of this approach is that sensible partitions in numeric covariates are also detected automatically

    Hydrological behaviour of the granitic Strengbach catchment (Vosges massif, Eastern France) during a flood event

    Get PDF
    A field campaign combining monitoring devices and determination of isotopes and chemical elements has been performed during a summer thunderstorm in the small granitic Strengbach catchment (Vosges, France). The collected ground data were used in a hydrological modelling exercise including two conceptual rainfallrunoff models (GR4, TOPMODEL). The predominant role in flood generation of pre-event water coming from the superficial layers of the water saturated area has been shown and a conceptual scheme has been proposed derived from the field observations. The two tested modelling structures and assumptions are not able to take into account fully the complexity of the physical processes involved in flood generation

    Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change

    Get PDF
    The prediction of methane emissions from high-latitude wetlands is important given concerns about their sensitivity to a warming climate. As a basis for the prediction of wetland methane emissions at regional scales, we coupled the variable infiltration capacity macroscale hydrological model (VIC) with the biosphere–energy-transfer–hydrology terrestrial ecosystem model (BETHY) and a wetland methane emissions model to make large-scale estimates of methane emissions as a function of soil temperature, water table depth, and net primary productivity (NPP), with a parameterization of the sub-grid heterogeneity of the water table depth based on TOPMODEL. We simulated the methane emissions from a 100 km × 100 km region of western Siberia surrounding the Bakchar Bog, for a retrospective baseline period of 1980–1999 and have evaluated their sensitivity to increases in temperature of 0–5 °C and increases in precipitation of 0–15%. The interactions of temperature and precipitation, through their effects on the water table depth, played an important role in determining methane emissions from these wetlands. The balance between these effects varied spatially, and their net effect depended in part on sub-grid topographic heterogeneity. Higher temperatures alone increased methane production in saturated areas, but caused those saturated areas to shrink in extent, resulting in a net reduction in methane emissions. Higher precipitation alone raised water tables and expanded the saturated area, resulting in a net increase in methane emissions. Combining a temperature increase of 3 °C and an increase of 10% in precipitation to represent climate conditions that may pertain in western Siberia at the end of this century resulted in roughly a doubling in annual emissions

    On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation

    Get PDF
    The effects of uncertainty in radar-estimated precipitation input on simulated runoff generation from a medium-sized (100-km2) basin in northern Texas are investigated. The radar-estimated rainfall was derived from Next Generation Weather Radar (NEXRAD) Level II base reflectivity data and was supplemented by ground-based rain-gauge data. Two types of uncertainty in the precipitation estimates are considered: (1) those arising from the transformation of reflectivity to rainfall rate and (2) those due to the spatial and temporal representation of the 'true' rainfall field. The study explicitly differentiates between the response of simulated saturation-excess runoff and infiltration-excess runoff to these uncertainties. The results indicate that infiltration-excess runoff generation is much more sensitive than saturation-excess runoff generation to both types of precipitation uncertainty. Furthermore, significant reductions in infiltration-excess runoff volume occur when the temporal and spatial resolution of the precipitation input is decreased. A method is developed to relate this storm-dependent reduction in runoff volume to the spatial heterogeneity of the highest-intensity rainfall periods during a storm

    Hydrological Models as Web Services: An Implementation using OGC Standards

    No full text
    <p>Presentation for the HIC 2012 - 10th International Conference on Hydroinformatics. "Understanding Changing Climate and Environment and Finding Solutions" Hamburg, Germany July 14-18, 2012</p> <p> </p

    Characterizing temporary hydrological regimes at a European scale

    Get PDF
    Monthly duration curves have been constructed from climate data across Europe to help address the relative frequency of ecologically critical low flow stages in temporary rivers, when flow persists only in disconnected pools in the river bed. The hydrological model is 5 based on a partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. The corresponding frequency for pools is then based on the ratio of bank full discharge to pool flow, arguing from observed ratios of cross-sectional areas at flood 10 and low flows to estimate pool flow as 0.1% of bankfull flow, and so estimate the frequency of the pool conditions that constrain survival of river-dwelling arthropods and fish. The methodology has been applied across Europe at 15 km resolution, and can equally be applied under future climatic scenarios
    corecore