145,611 research outputs found
Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2
The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission
A WISE View of a Nearby Supercluster A2199
We use Wide-field Infrared Survey Explorer (WISE) data covering the entire
region (~130 deg^2) of the A2199 supercluster at z=0.03 to study the
mid-infrared (MIR) properties of supercluster galaxies. We identify a `MIR
star-forming sequence' in the WISE [3.4]-[12] color-12 \mu m luminosity
diagram, consisting of late-type, star-forming galaxies. At a fixed star
formation rate (SFR), the MIR-detected galaxies at 22 \mu m or 12 \mu m tend to
be more metal rich and to have higher surface brightness than those without MIR
detection. Using these MIR-detected galaxies, we construct the IR luminosity
function (LF) and investigate its environmental dependence. Both total IR (TIR)
and 12 \mu m LFs are dominated by late-type, star-forming galaxies. The
contribution of active galactic nuclei (AGN)-host galaxies increases with both
TIR and 12 \mu m luminosities. The contribution of early-type galaxies to the
12 \mu m LFs increases with decreasing luminosity. The faint-end slope of the
TIR LFs does not change with environment, but the change of faint-end slope in
the 12 \mu m LFs with the environment is significant: there is a steeper
faint-end slope in the cluster core than in the cluster outskirts. This
steepening results primarily from the increasing contribution of early-type
galaxies toward the cluster. These galaxies are passively evolving, and contain
old stellar populations with weak MIR emission from the circumstellar dust
around asymptotic giant branch stars.Comment: 14 pages, 14 figures. To appear in Ap
Probing Cool and Warm Infrared Galaxies using Photometric and Structural Measures
We have analyzed a sample of nearby cool and warm infrared (IR) galaxies
using photometric and structural parameters. The set of measures include
far-infrared color (), total IR
luminosity (), radio surface brightness as well as radio,
near-infrared, and optical sizes. In a given luminosity range cool and warm
galaxies are considered as those sources that are found approximately below and above the mean color in the far-infrared
diagram. We find that galaxy radio surface brightness is well correlated with
color whereas size is less well correlated with color. Our analysis indicates
that IR galaxies that are dominated by cool dust are large, massive spirals
that are not strongly interacting or merging and presumably the ones with the
least active star formation. Dust in these cool objects is less centrally
concentrated than in the more typical luminous and ultra-luminous IR galaxies
that are dominated by warm dust. Our study also shows that low luminosity early
type unbarred and transitional spirals are responsible for the large scatter in
the diagram. Among highly luminous galaxies, late type unbarred
spirals are predominately warm, and early type unbarred and barred are
systematically cooler. We highlight the significance of diagram
in terms of local and high redshifts sub-millimeter galaxies.Comment: Accepted for publication in ApJ, 2006, 23 pages, 3 postscript
figures, 1 table. The table can be obtained on request from the author
Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB
The type III effector protein encoded by avirulence gene B (AvrB) is delivered into plant cells by pathogenic strains of Pseudomonas syringae. There, it localizes to the plasma membrane and triggers immunity mediated by the Arabidopsis coiled-coil (CC)-nucleotide binding (NB)-leucine-rich repeat (LRR) disease resistance protein RPM1. The sequence unrelated type III effector avirulence protein encoded by avirulence gene Rpm1 (AvrRpm1) also activates RPM1. AvrB contributes to virulence after delivery from P. syringae in leaves of susceptible soybean plants, and AvrRpm1 does the same in Arabidopsis rpm1 plants. Conditional overexpression of AvrB in rpm1 plants results in leaf chlorosis. In a genetic screen for mutants that lack AvrB-dependent chlorosis in an rpm1 background, we isolated TAO1 (target of AvrB operation), which encodes a Toll-IL-1 receptor (TIR)-NB-LRR disease resistance protein. In rpm1 plants, TAO1 function results in the expression of the pathogenesis-related protein 1 (PR-1) gene, suggestive of a defense response. In RPM1 plants, TAO1 contributes to disease resistance in response to Pto (P. syringae pathovars tomato) DC3000(avrB), but not against Pto DC3000(avrRpm1). The tao1–5 mutant allele, a stop mutation in the LRR domain of TAO1, posttranscriptionally suppresses RPM1 accumulation. These data provide evidence of genetically separable disease resistance responses to AvrB and AvrRpm1 in Arabidopsis. AvrB activates both RPM1, a CC-NB-LRR protein, and TAO1, a TIR-NB-LRR protein. These NB-LRR proteins then act additively to generate a full disease resistance response to P. syringae expressing this type III effector
Recommended from our members
Adjunct Therapy in Type 1 Diabetes: A Survey to Uncover Unmet Needs and Patient Preferences Beyond HbA1c Measures.
Background: Adjunct therapy can help patients with type 1 diabetes achieve glycemic goals while potentially mitigating some of the side effects of insulin. In this study, we used a patient survey to identify the unmet needs in type 1 diabetes therapy, patient views of treatment benefit-risk trade-offs, and patient preferences for the use of an adjunct therapy. Methods: A quantitative survey was sent to 2084 adults with type 1 diabetes in November 2017. "Jobs-to-be-done" and conjoint analyses were performed on survey responses to identify unmet needs and the importance of treatment-associated benefits and risks to patients. A 5-point Likert scale measured the importance and satisfaction with patients' current therapy, and with gaps relating to unmet needs. In the conjoint analysis, patients were asked to choose between "packages" of attributes of two doses of adjunct therapy (200 and 400 mg) and placebo, based on established benefits and side effects. Results: A total of 1313 patients (63%) responded. The greatest unmet needs identified were simplifying treatment, lowering/maintaining glycated hemoglobin (HbA1c), reducing mental effort, and increasing time in range (TIR). Conjoint analysis showed that reductions in body weight and TIR had the highest attribute importance (25% and 18%, respectively). The majority (93%) of patients had a preference for the adjunct therapy (either dose) over placebo. Conclusions: This survey highlights the importance of measures beyond HbA1c, such as treatment simplification and TIR, and patient preference for adjunct therapies that help address unmet needs in type 1 diabetes treatment
Isolation and linkage mapping of NBS-LRR resistance gene analogs in red raspberry ( Rubus idaeus L.) and classification among 270 Rosaceae NBS-LRR genes
Plant R genes confer resistance to pathogens in a gene-for-gene mode. Seventy-five putative resistance gene analogs (RGAs) containing conserved domains were cloned from Rubus idaeus L. cv. ‘Latham' using degenerate primers based on RGAs identified in Rosaceae species. The sequences were compared to 195 RGA sequences identified from five Rosaceae family genera. Multiple sequence alignments showed high similarity at multiple nucleotide-binding site (NBS) motifs with homology to Drosophila Toll and mammalian interleukin-1 receptor (TIR) and non-TIR RNBSA-A motifs. The TIR sequences clustered separately from the non-TIR sequences with a bootstrap value of 76%. There were 11 clusters each of TIR and non-TIR type sequences of multiple genera with bootstrap values of more than 50%, including nine with values of more than 75% and seven of more than 90%. Polymorphic sequence characterized amplified region and cleaved amplified polymorphic sequence markers were developed for nine Rubus RGA sequences with eight placed on a red raspberry genetic linkage map. Phylogenetic analysis indicated four of the mapped sequences share sequence similarity to groupTIR I, while three others were spread in non-TIR groups. Of the 75 Rubus RGA sequences analyzed, members were placed in five TIR groups and six non-TIR groups. These group classifications closely matched those in 12 of 13 studies from which these sequences were derived. The analysis of related DNA sequences within plant families elucidates the evolutionary relationship and process involved in pest resistance development in plants. This information will aid in the understanding of R genes and their proliferation within plant genome
Bacillus anthracis TIR Domain-Containing Protein Localises to Cellular Microtubule Structures and Induces Autophagy
Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax. Here we present the first study of this protein, designated BaTdp. Recombinantly expressed and purified BaTdp TIR domain interacted with several human TIR domains, including that of the key TLR adaptor MyD88, although BaTdp expression in cultured HEK293 cells had no effect on TLR4- or TLR2- mediated immune activation. During expression in mammalian cells, BaTdp localised to microtubular networks and caused an increase in lipidated cytosolic microtubule-associated protein 1A/1B-light chain 3 (LC3), indicative of autophagosome formation. In vivo intra-nasal infection experiments in mice showed that a BaTdp knockout strain colonised host tissue faster with higher bacterial load within 4 days post-infection compared to the wild type B. anthracis. Taken together, these findings indicate that BaTdp does not play an immune suppressive role, but rather, its absence increases virulence. BaTdp present in wild type B. anthracis plausibly interact with the infected host cell, which undergoes autophagy in self-defence
The EHEC Type III Effector NleL Is an E3 Ubiquitin Ligase That Modulates Pedestal Formation
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and may result in potentially fatal hemolytic uremia syndrome in humans. EHEC colonize the intestinal mucosa and promote the formation of actin-rich pedestals via translocated type III effectors. Two EHEC type III secreted effectors, Tir and EspFu/TccP, are key players for pedestal formation. We discovered that an EHEC effector protein called Non-LEE-encoded Ligase (NleL) is an E3 ubiquitin ligase. In vitro, we showed that the NleL C753 residue is critical for its E3 ligase activity. Functionally, we demonstrated that NleL E3 ubiquitin ligase activity is involved in modulating Tir-mediated pedestal formation. Surprisingly, EHEC mutant strain deficient in the E3 ligase activity induced more pedestals than the wild-type strain. The canonical EPEC strain E2348/69 normally lacks the nleL gene, and the ectopic expression of the wild-type EHEC nleL, but not the catalytically-deficient nleL(C753A) mutant, in this strain resulted in fewer actin-rich pedestals. Furthermore, we showed that the C. rodentium NleL homolog is a E3 ubiquitin ligase and is required for efficient infection of murine colonic epithelial cells in vivo. In summary, our study demonstrated that EHEC utilizes NleL E3 ubiquitin ligase activity to modulate Tir-mediated pedestal formation.National Institutes of Health (U.S.) (grant AI078092)National Institutes of Health (U.S.) (grant AI068655
Large bandwidth, highly efficient optical gratings through high index materials
We analyze the diffraction characteristics of dielectric gratings that
feature a high index grating layer, and devise, through rigorous numerical
calculations, large bandwidth, highly efficient, high dispersion dielectric
gratings in reflection, transmission, and immersed transmission geometry. A
dielectric TIR grating is suggested, whose -1dB spectral bandwidth is doubled
as compared to its all-glass equivalent. The short wavelength diffraction
efficiency is additionally improved by allowing for slanted lamella. The
grating surpasses a blazed gold grating over the full octave. An immersed
transmission grating is devised, whose -1dB bandwidth is tripled as compared to
its all-glass equivalent, and that surpasses an equivalent classical
transmission grating over nearly the full octave. A transmission grating in the
classical scattering geometry is suggested, that features a buried high index
layer. This grating provides effectively 100% diffraction efficiency at its
design wavelegth, and surpasses an equivalent fused silica grating over the
full octave.Comment: 15 pages, 7 figure
- …
