342,905 research outputs found

    Density of some titanium-bearing silicate liquids and the compositional dependence of the partial molar volume of TiO2

    Get PDF
    The densities of thirteen silicate liquids along the Na2SiO3-TiO2 and CaSiO3-TiO2 joins and six other titanium-bearing silicate liquids of the general formula TiSiO5 (where X = Li, Na, K, Rb, Cs, Ca, Sr, Ba) have been measured in equilibrium with air using the double Pt bob Archimedean method. The Na2SiO3-TiO2 join was investigated from 10–50 mole% TiO2 in the temperature range 1000–1150°C whereas the CaSiO3-TiO2 join was investigated from 10–80 mole% TiO2 in the temperature range of 1400–1625°C. Density increases with TiO2 content along both joins. Partial molar volumes of the binary endmembers, Na2SiO3 and CaSiO3, and of TiO2 have been computed. The partial molar volume of Na2SiO3 agrees well with that determined by Bockris et al. (1955). The partial molar volume of CaSiO3 is in disagreement with that of Tomlinson et al. (1958). The partial molar volume of TiO2 derived from a linear fit to the Na2SiO3-TiO2 join is 27.6(3) cm3/mole at 1150°C. The partial molar volume of TiO2 derived from linear extrapolation of the CaSiO3-TiO2 data to TiO2 at 1600°C is 24.3(4) cm3/mole. Comparison of the partial molar volume data from these binary joins with TiO2 liquid density data (Dingwell, 1991) requires the existence of a large positive excess volume in the Na2SiO3-TiO2 system at 1150°C

    AgandCuloadedonTiO2/graphite as a catalyst for �Escherichia coli- contaminated water disinfection

    Get PDF
    TiO2 film was synthesized by means of the chemical bath deposition (CBD) method from TiCl4 as a precursor and surfactant cetyl trimethyl ammonium bromide (CTAB) as a linking and assem- bling agent of the titanium hydroxide network on a graphite substrate. Ag and Cu were loaded on the TiO2 film by means of electrodeposition at various applied currents. Photoelectrochemical testing on the composite of Ag–TiO2/G and Cu–TiO2/G was used to define the composite for Escherichia coli-contaminated water disinfection. Disinfection efficiency and the rate of disinfection of E. coli-contaminated water with Ag–TiO2/G as a catalyst was higher than that observed for Cu–TiO2/G in all disinfection methods including photocatalysis (PC), electrocatalysis (EC), and photoelectrocatalysis (PEC). The highest rate constant was achieved by the PEC method using Ag–TiO2/G, k was 6.49 × 10−2 CFU mL−1 min−1 . Effective disinfection times of 24 h (EDT24) and 48 h (EDT48) were achieved in all methods except the EC method using Cu–TiO2/G. Keywords: Ag–TiO2/G, Cu–TiO2/G, Escherichia coli, disinfectio

    TiO2 Nanocrystals Grown on Graphene as Advanced Photocatalytic Hybrid Materials

    Get PDF
    Graphene/TiO2 nanocrystals hybrid is successfully prepared by directly growing TiO2 nanocrystals on graphene oxide (GO) sheets. The direct growth of nanocrystals on GO sheets was achieved by a two-step method, in which TiO2 was coated on GO sheets by hydrolysis first and crystallized into anatase nanocrystals by hydrothermal treatment in second step. Slow hydrolysis reaction through the use of EtOH/H2O mixed solvents and addition of H2SO4 allows the selectively growing TiO2 on GO and suppressing free growth in solution. The method offers easy access to the GO/TiO2 nanocrystals hybrid with well controlled coating and strong interactions between TiO2 and the underlying GO sheets. The strong coupling could lead to advanced hybrid materials for various applications including photocatalysis. The prepared graphene/TiO2 nanocrystals hybrid has demonstrated superior photocatalytic activity in degradation of rhodamine B over other TiO2 materials, showing an impressive 3-fold photocatalytic enhancement over P25. It is expected that the hybrid material could also be promising for various other applications including lithium ion battery where strong electrical coupling to TiO2 nanoparticles is essential.Comment: Nano Research, in pres

    Photocatalytic Decomposition of Phenol under Visible and UV Light Utilizing Titanium Dioxide Based Catalysts

    Get PDF
    Pollution in wastewater effluvia from phenol and phenolic compounds is a common occurrence in many industrial manufacturing plants. Phenol is toxic to human beings as well as a contaminant to the environment, meanwhile, it is difficult to remove from wastewater due to its non-biodegradable nature. To boost the rate of decomposition, various catalytic approaches have been developed. With the interest of decreasing operation cost, titanium dioxide (TiO2) based catalysts have emerged as good candidates for the photocatalytic process. In this honors project, a series of TiO2 based catalysts, including TiO2, N-TiO2, Cu-TiO2, and Cu-N-TiO2, were utilized to study the decomposition of phenol. Each catalyst was studied under the visible light (589nm) and UV light (385nm) conditions. The UV-Vis spectrophotometer was used to evaluate the catalytic performance. The results revealed that the addition of nitrogen improved the decomposition rate of phenol compared with that of TiO2 itself. Copper did not show improved photocatalysis and requires further investigation

    Electronic structure and enhanced visible light absorption of N, B-codoped TiO2

    Full text link
    We present the GGA+U calculations to investigate the electronic structure and visible light absorption of the N, B-codoped anatase TiO2. The NsBi (substitutional N, interstitial B) codoped TiO2 produces significant Ti 3d and N 2p mid-gap states when the distance of N and B atoms is far, and the NiBi (interstitial N and B) and NsBs (substitutional N and B) codoped TiO2 prefer to form localized p states at 0.3-1.2 eV above the valence band maximum. Further, the optical band edges of the three codoped systems shift slightly to the visible region, but only the far distance NsBi codoped TiO2 shows an obvious visible optical transition. These results indicate that the NsBi codoped TiO2 has a dominant contribution to the visible absorption of the N, B-codoped TiO2.Comment: 4 pages, 4 figures, 17 reference

    Development of titanium dioxide nanoparticles/nanosolution for photocatalytic activity

    Get PDF
    Biological and chemical contaminants by man-made activities have been serious global issue. Exposure of these contaminants beyond the limits may result in serious environmental and health problem. Therefore, it is important to develop an effective solution that can be easily utilized by mankind. One of the effective ways to overcome this problem is by using titanium dioxide (TiO2). TiO2 is a well-known photocatalyst that widely used for environmental clean-up due to its ability to decompose organic pollutant and kill bacteria. Although it is proven TiO2 has an advantage to solve this concern, its usefulness unfortunately is limited only under UV light irradiation. Therefore, the aim of this work was to investigate the potential of TiO2 that can be activated under visible light by the incorporation of metal ions (Fe, Ag, Zr and Ag-Zr). In this study, sol-gel method was employed for the synthesis of metal ions incorporated TiO2. XRD analysis revealed that all samples content biphasic anatase-brookite TiO2 of size 3 nm to 5 nm. It was found that the incorporation of these metal ions did not change the morphology of TiO2 but the crystallinity and optical properties were affected. The crystallinity of anatase in the biphasic TiO2 was found to be decreased and favored brookite formation. PL analysis showed metal ions incorporation suppressed the recombination of electron-hole pairs while the band gap energy of TiO2 (3.2 eV) was decreased by the incorporation of Fe (2.46 eV) and Ag (2.86 eV). Among this incorporation, Ag-Zr incorporated TiO2 showed highest performance for methyl orange degradation (93%) under fluorescent xxv light irradiation for 10 h. This follows by Zr-TiO2 (82%), Fe-TiO2 (75%) and Ag�TiO2 (43%). Meanwhile, the highest antibacterial performance was exhibited by Ag�TiO2. TEM images showed that E.coli bacterium was killed within 12 h after treated with Ag-TiO2. The results obtained from the fieldwork study established that Ag-Zr incorporation have excellent performances for VOC removal and antibacterial test. The VOC content after treated with Ag-Zr-TiO2 fulfilled the Industry Code of Practice on Indoor Air Quality 2010 which is lower than 3 ppm. In addition, the percentage of microbes also found to be decrease around 45 % within 5 days of monitoring

    Unusual Compression Behavior of Columbite TiO2 via First-Principles Calculations

    Full text link
    The physical mechanisms behind the reduction of the bulk modulus of a high-pressure cubic TiO2 phase are confirmed by first-principles calculations. An unusual and abrupt change occurs in the dependence of energy on pressure at 43 GPa, indicating a pressure-induced phase transition from columbite TiO2 to a newly-identified modified fluorite TiO2 with a Pca21 symmetry. Oxygen atom displacement in Pca21 TiO2 unexpectedly reduces the bulk modulus by 34% relative to fluorite TiO2. This discovering provides a direct evidence for understanding the compressive properties of such groups of homologous materialsComment: [email protected] or [email protected]

    The Density of Titanium(IV) Oxide Liquid

    Get PDF
    The density of TiO2 liquid in equilibrium with air has been measured at 1875° to 1925°C using an Ir double bob Archimedean method. The melt density data have been combined with data extrapolated from the CaSiO3─TiO2 join at 1600°C. A combined fit to these density data yields the following description of the density of liquid TiO2: ρ= 3.7611 - 0.00028T(°C), in the temperature range of 1600° to 1925°C. This expansivity value is consistent with those obtained on TiO2-rich melts using a Pt-based system at lower temperature and with multicomponent oxide data. The similarity between the volume of liquid TiO2 and that of crystalline rutile implies a dominantly octahedral coordination of Ti in the liquid state

    Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layers

    Get PDF
    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol–gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode’s physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate–layer interaction. From the point of view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 C.This study was supported by Grant No. N N507 501339 of the National Science Centre. The authors wish to express their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy
    corecore