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Abstract 
 

Pollution in wastewater effluvia from phenol and phenolic compounds is a common occurrence in many 

industrial manufacturing plants. Phenol is toxic to human beings as well as a contaminant to the 

environment, meanwhile, it is difficult to remove from wastewater due to its non-biodegradable nature. To 

boost the rate of decomposition, various catalytic approaches have been developed. With the interest of 

decreasing operation cost, titanium dioxide (TiO2) based catalysts have emerged as good candidates for the 

photocatalytic process.  

In this honors project, a series of TiO2 based catalysts, including TiO2, N-TiO2, Cu-TiO2, and Cu-N-TiO2, 

were utilized to study the decomposition of phenol. Each catalyst was studied under the visible light 

(589nm) and UV light (385nm) conditions. The UV-Vis spectrophotometer was used to evaluate the 

catalytic performance. The results revealed that the addition of nitrogen improved the phenol degradation 

compared with that of TiO2 itself. Copper did not show improved photocatalytic performance and requires 

further investigation. 
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1.0 Introduction 

1.1 Phenol in industry 

Phenol (C6H5OH) is a carboxylic acid consisting of a phenyl group bonded to a hydroxyl group, 

shown in Figure 1, which is used to manufacture a wide variety of products. Many industrial processes rely 

on the use of phenol, such as the petrochemical industry, petroleum refineries, coal gasification operations, 

liquefication processes, dye synthesis units, pulp and paper mills and pharmaceutical industries. In addition, 

phenolic resins are critical in the plywood, construction, automotive, and appliance industries [1]. Its usages 

can be found in adhesives and sealant chemicals, flame retardants, ion exchange agents, and odor agents. 

Consumer uses of phenol include wood products, cleaning and furnishing care products, floor coverings, 

and paints and coatings [2]. Due to the wide range and abundant use of phenol, it is critical to be aware of 

the dangers of the chemical and effective techniques for disposal. 

 

Figure 1. Chemical Structure of Phenol [2] 

1.2 Toxicity of phenol 

Phenol is a contaminant to the environment and difficult to remove from wastewater due to its non-

biodegradable nature. Pollution in wastewater effluvia from phenol and phenolic compounds is a common 

occurrence in many industrial manufacturing plants. Phenol is a highly corrosive nerve poisoning agent and 

is known to have harmful short-term and long-term effects on human beings. It is also toxic to aquatic 

wildlife. The toxic levels range between 10-24mg/L for humans and 9-25mg/L for fish. The lethal blood 

concentration for humans is approximately 150 mg/100ml [1]. As a result of the toxic and harmful nature 
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of phenol, it is imperative that phenol is properly removed/decomposed from wastewater before wastewater 

streams are returned to environment.  

1.3 Methods of phenol decomposition 

Various methods of phenol decomposition have been studied to remove/reduce phenol 

concentrations in wastewater streams. Polymerization is a method in which phenol polymerizes in the 

presence of hydrogen peroxide and enzymes. It is highly effective but costly due to the required enzymes. 

Biological methods have also been used to carry out decomposition of phenol using activated sludge in 

membrane bioreactors. This has also proven effective but requires high cleaning expenses due to fouling. 

Other methods that have been studied include electrocoagulation, extraction, adsorption and ion exchange, 

and photodecomposition. 

 Titanium dioxide (TiO2) is photocatalyst that is commercially available and fairly inexpensive. It 

is known to initiate the degradation and mineralization of various organic pollutants. As a result, TiO2 

photocatalyzed degradation of phenol in water is a potential method of environmental remediation. 

However, TiO2 photocatalyzed reactions with phenol are limited from a low quantum efficiency and need 

for UV-light [3]. As a result, TiO2 has been used extensively in combination with other materials. For 

example, it has been found that activated carbon improves the photocatalytic activity of TiO2. Recently, 

carbon nanotubes (CNT) are also an attractive option due to their electronic, adsorption, thermal and 

mechanical properties [4]. In addition, photocatalytic applications of various Layered Double Hydroxides 

(LDHs), including ZnAl, ZnTi, and ZnAlFe, have been reported. Mixed oxides obtained from calcination 

of transition metal-containing LDHs have also proven to be beneficial to photocatalysis, for example, 

Zn(Al) [5].  

However, the use of UV light to decompose large volumes of wastewater is not a practical. 

Scientists are continually searching for sustainable technology in chemical/catalytic alternatives that are 

economically favorable and efficient in the degradation and removal of phenol from water. The goal of this 
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project was to study the degradation of phenol via photocatalysis utilizing titanium dioxide modified 

catalysts under UV light as well as visible light. If photodegradation of phenol and other organic compounds 

can be achieved under visible light, it could be revolutionary to wastewater treatment in industry. 

1.4 Objectives 

The motivation of this project was primarily to determine the feasibility of using the TiO2 catalyst 

for photocatalytic degradation of phenol. The catalysts studied in this project were titanium dioxide (TiO2), 

nitrogen modified titanium dioxide (N-TiO2), copper modified titanium dioxide (Cu-TiO2), and nitrogen 

and copper modified titanium dioxide (Cu-N-TiO2). The influence of nitrogen and copper doping was to be 

explored and compared under UV and visible light conditions. The effect of irradiation time on degradation 

was to be considered for catalysts with high activity. 

1.5 Rationales  

 This project focused on finding the catalyst with the highest activity. The following questions 

needed to be addressed.  

• Does modification with nitrogen and/or copper improve photocatalytic performance? 

• Can equivalent photocatalytic activity be achieved in the visible spectrum as in the UV spectrum? 

• Is the catalyst stable over time? 

2.0 Methodology  

2.1 Photocatalysis reaction kinetics via titanium dioxide catalyst 

In a heterogeneous photocatalytic system, photo-induced molecular transformations or reactions 

usually take place at the surface of the catalyst. The first step is to excite the system using photons of light. 

Molecules absorb photons to produce a highly reactive, electronically excited state. The photon requires 

sufficient energy to promote an electron across the band gap, or the void region between the top of the filled 

valence band to the bottom of the vacant band. Since TiO2 has a wide band gap of 3.2eV, visible light is 
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not sufficient. Therefore, TiO2 requires light from UV range (wavelength less than 390nm) to initiate the 

photoreaction. This initial excitation is followed by an electron transfer to the solvent or organic species 

that is absorbed on the surface of the catalyst. In the case of TiO2, the excited electron reduces an oxygen 

molecule to 𝑂2
−. Meanwhile the positively charged electron hole (h+) reacts with water to produce a 

hydroxyl radical (·OH), as shown in Figure 2. The hydroxyl radical initiates the chemical reactions in the 

photocatalytic process [6]. The absorption of a photon of radiation occurs very rapidly (on the order of      

10-15s), while the subsequent deexcitation occurs much slower. The photochemical reactions occur on the 

time scale of 10-12 to 10-9s [7].  

 

Figure 2. Photocatalytic Process on TiO2 Catalysts. [6] 

 

The promotion of an electron creates an electron-hole pair which can result in one of two pathways. 

The desirable pathway is for the photoinduced electron to transfer to the adsorbed organic/inorganic species 

or to the solvent. In competition with this charge transfer is the undesirable pathway: electron-hole 

recombination. The efficiency of a photocatalytic process is proportional to the rate of the charge transfer 

process and inversely proportional to the sum of the charge transfer rate and electron-hole recombination 

rate. Therefore, recombination of the electron-hole pair needs to be inhibited in order to achieve an efficient 
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charge transfer process on the catalyst surface. Modifications to semiconductor surfaces with metals or 

combinations with other semiconductors are proposed to decrease recombination rate [7]. 

2.2 Phenol decomposition catalyst reaction kinetics 

There are two challenges associated with the efficiency of the photocatalytic process. First, the 

photon of light that strikes the catalyst must have sufficient energy to promote an electron across the band 

gap. In the case of TiO2, visible light is not sufficient and UV light must be used to activate the catalyst. 

Since UV light on the Earth’s surface is less than 5% of the solar spectrum, using UV light for 

decomposition of wastewater is not practical on an industrial scale [9]. The second challenge is that 

electron-hole recombination must be slowed down in order to achieve and efficient reaction. 

In the case of photocatalytic decomposition of phenol, TiO2 has been used as the catalyst. The 

intermediate products formed via the reaction of phenol with ·OH radical ions include hydroquinone (HQ), 

pyrocatechol (CC), 1,2,4-benzenetriol (HHQ), pyrogallol (PG), 2-hydroxy-1,4-benzoquinone (HBQ), and 

1,4-benzoquinone (BQ). These intermediates undergo further photocatalytic oxidation and produce very 

polar intermediates like carboxylic acids and aldehydes and finally CO2 and H2O [8].  

 

Figure 3. Production Distributions from Phenol Decomposition Reaction [8]  
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The complete decomposition of phenol can be expressed by Equation 1 [8]. 

 𝐶6𝐻5𝑂𝐻 + 7𝑂2 → 6𝐶𝑂2 + 3𝐻2𝑂 [1] 

It has been reported that nonmetal doping of TiO2 catalysts can decrease the band gap energy, thus 

improving photocatalytic performance under a wider spectrum including the visible light spectrum, which 

would result in a more efficient utilization of the main part of the solar system [9]. In this project, nitrogen 

doping of TiO2 was chosen to see if photocatalytic performance could be improved under visible light 

conditions. 

It has also been found that modifications to semiconductor surfaces by the addition of metals can 

decrease recombination rate [6]. For example, copper has been reported to effectively reduce the extent of 

hole-electron recombination by trapping electrons on the surface of the catalyst. In this project, copper 

doping of TiO2 catalysts was done to see if photocatalytic performance could be improved in the visible or 

UV region.  

Finally, combining metal and nonmetal methods has been found significantly reduce band gap 

energy due to the formation of mixed energy levels between the valence band and conduction band of TiO2. 

This could further improve photocatalytic response in the visible light region [9]. In this project, TiO2 

catalysts were doped with a combination of copper and nitrogen and studied under both visible and UV 

light conditions. 

3.0 Methods  

3.1 Equipment 

 A 250ml volumetric flask (Pyrex, ±0.12mL) and a mass balance (U.S. Solid Laboratory Equipment, 

±0.0005g) was used for this project. To mix the catalyst and solutions well, a magnetic mixer (IKA C-MAG 

HS10) was used. The UV-1800 Shimadzu Spectrophotometer and UV Probe 2.42 software were used in 

conjunction to measure absorbance.  
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3.2 Chemicals 

• phenol crystals (Acros Organics, 99.5% extra pure)  

• titanium(IV) oxide nanopowder (Aldrich Chemistry, ≥99.5%, 21mm particle size)  

• nitrogen modified titanium dioxide (N-TiO2) synthesized in the lab via the urea pyrolysis 

method (reaction temperature of 450ºC) with a designed nitrogen loading of 30wt%  

• copper modified titanium dioxide (Cu-TiO2) and copper and nitrogen modified titanium 

dioxide (Cu-N-TiO2) synthesized via solid state reaction by mixing and grinding copper 

acetate, sodium hydroxide, and TiO2 together in mortar for 30 minutes for a designed 

loading of 10wt% copper for Cu-TiO2; and 10wt% copper, 30wt% nitrogen for Cu-N-

TiO2 

3.3 Experimental procedure 

 The concentration of phenol solution was 0.531mM. For each trial, approximately 2.5mg catalyst 

was mixed with 40mL of phenol solution. The catalyst in solution was mixed using the magnetic mixer for 

1 hour without irradiated light, allowing phenol to absorb to catalyst surface. A sample was then extracted 

via pipette to a cuvette and tested by the UV spectrophotometer. The absorbance across a range of 

wavelengths between 300 and 240nm was recorded. After 1 hour of mixing without light, either LED visible 

(589nm) or UV (385nm) light (I=500 mA) was turned on for a determined length of time. The sample was 

then tested using the spectrophotometer to obtain the peak absorbance. The data obtained was exported to 

excel and analyzed to calculate final phenol concentration. The final concentration was calculated using 

Beer’s Law shown by Equation 2. 

𝐴 = 𝜀𝑙𝑐       [2] 

Where A is absorbance, 𝜀 is molar absorptivity (L mol-1 cm-1), l is path length of sample (path length of the 

cuvette in which the sample is contained), and c is concentration (mol L-1).  It was known the product 𝜀𝑙 

was constant since molar absorptivity and path length were constant. Therefore, initial concentration 



8 

 

(0.531mM) was used to solve for constant, 𝜀𝑙, using initial peak absorbance. Subsequently the final peak 

absorbance was used to calculate the final concentration after irradiation. The phenol conversion was 

calculated using Equation 3. 

% 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
𝐶𝑃ℎ𝑒𝑛𝑜𝑙,𝑖𝑛𝑖𝑡𝑎𝑙−𝐶𝑃ℎ𝑒𝑛𝑜𝑙,𝑓𝑖𝑛𝑎𝑙

𝐶𝑃ℎ𝑒𝑛𝑜𝑙,𝑖𝑛𝑖𝑡𝑎𝑙
    [3] 

Typically, the absorbance was measured for each catalyst over 2 hours under both UV light and 

visible light. Further, conversion of phenol over time was studied using the catalysts that showed the 

greatest activity. This was done by irradiating the solution with visible or UV light for 4 hours while 

measuring concentration each hour.  

4.0 Results 

4.1 UV-Vis spectrum of pure phenol 

A typical UV-Vis absorbance curve for phenol across the wavelength range of 240-300nm is shown 

in Figure 4. The peak absorbance of phenol is 269nm [5]. As a result, subsequent calculations use the 

absorbance measured at 269nm to determine phenol concentration at any point along the reaction. 

 

Figure 4. Typical UV-Vis Spectra of Phenol.  
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4.2 Visible Light (589nm) 

4.2.1 Effect of TiO2 modification  

 

  Titanium dioxide was modified with nitrogen and copper alone as well as combined in this project. 

The modification of the titanium dioxide catalyst with nitrogen was found to improve photocatalytic activity 

in the visible light region. The amount of phenol decomposed (% conversion) after a 2-hour irradiation 

period appeared to increase with the presence of nitrogen. The nitrogen modified catalyst (N-TiO2) resulted 

in a conversion of 5.7%, which is more than two times greater compared with that of non-modified TiO2 

catalyst (2.2%). The copper-nitrogen modified catalyst (Cu-N-TiO2) also appeared to improve 

photocatalytic activity, resulting in a conversion of 5.0%. Error bars on TiO2 data represent standard 

deviation of duplicate trials. 

 

Figure 5. Phenol Conversion using TiO2 and Modified TiO2 Catalysts in the Visible Spectrum. 

 

The nitrogen modified catalyst appeared to allow for the greatest phenol conversion as a result of 

visible light irradiation. The peak absorbance decreased, which indicates phenol degradation occurred, as 

shown in Figure 6. The absorbance curves for Cu-N-TiO2 and TiO2 can be found in the appendix. 
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Figure 6. UV-Vis Spectra using N-TiO2 Catalyst in the Visible Spectrum. 

 

The copper modified catalyst (Cu-TiO2), on the other hand, appeared to have alternate effects on 

the absorbance curve. After 2 hours of irradiation under visible light, there was no evident decrease in peak 

absorbance, however there was a change in absorbance in the 280-300nm range. Since the curve does not 

appear to be effected from 250-275nm including the peak absorbance, it suggests that visible light had 

negligible effects on phenol decomposition, as shown in Figure 7. It should be noted that the Cu-TiO2 

catalyst requires further study under these conditions to determine specific effects of copper modification 

on the solution in the UV spectrum.  
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Figure 7. UV-Vis Spectra using Cu-TiO2 Catalyst in the Visible Spectrum.  

 

4.2.2 Catalytic performance of Cu-N-TiO2 and N-TiO2 catalysts 

 

 To further study the effects of the nitrogen modified catalysts, the Cu-N-TiO2 and N-TiO2 catalysts 

were irradiated for 4 hours, measuring phenol concentration every hour, as shown in Figure 8. Contrary to 

the previous results which suggested N-TiO2 was the most effective catalyst, data suggested phenol 

degradation occurred at a greater rate using the Cu-N-TiO2 catalyst. Phenol concentration decreased steadily 

over the 4-hour irradiation period for both catalysts. The overall conversion for the Cu-N-TiO2 catalyst and 

the N-TiO2 catalyst over four hours was 9.3% and 3.6% respectively.  
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Figure 8.  Phenol Conversion over Time using N-TiO2 and Cu-N-TiO2 in Visible Spectrum.  

 

4.3 UV light (385nm) 

4.3.1 Effect of TiO2 modification 

 

Similar to its catalytic performance in the visible range, the nitrogen modified catalyst (N-TiO2) 

appeared to improve photocatalytic phenol decomposition under UV light conditions. The conversion for 

the nitrogen modified catalyst (N-TiO2) was observed to be 5.7%, greatly exceeding that of the non-

modified TiO2 catalyst (0.8%). Interestingly, the copper-nitrogen modified catalyst (Cu-N-TiO2) didn’t 

appear to promote photocatalysis in the UV spectrum, as shown in Figure 9. Error bars on the TiO2 catalyst 

data represent standard deviation of duplicate trials. Absorbance curves obtained from the UV-Vis 

spectrophotometer can be found in the appendix. 
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Figure 9. Phenol Conversion using TiO2 and Nitrogen Modified TiO2 in the UV Spectrum. 

 

As seen under visible light conditions, the copper modified catalyst showed alternate effects to 

nitrogen modification. After 2 hours of irradiation under UV light, the peak absorbance did not appear to 

change, however, absorbance varied in the 275-300nm region, shown in Figure 10. It suggests that the 

copper modified catalyst had some effects on the solution over time, but requires further investigation to 

find specific effects of copper in the UV spectrum.  

 

Figure 10. UV-Vis Spectra using Cu-TiO2 Catalyst in the UV Spectrum.  
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4.3.2 Catalytic performance of Cu-N-TiO2 and N-TiO2 catalysts 

To further study the effects of the nitrogen modified catalysts, the Cu-N-TiO2 and N-TiO2 catalysts 

were irradiated for 4 hours, measuring phenol concentration every hour, as shown in Figure 11. Again. data 

suggests negligible phenol degradation using the Cu-N-TiO2 catalyst. There is reason to believe error 

effected these results as concentration appears to increase over time. The N-TiO2 catalyst appeared to 

decrease slowly over the irradiation period. 

 

Figure 11. Phenol Conversion over Time using N-TiO2 and Cu-N-TiO2 Catalysts in UV Spectrum.  

 

5.0 Discussion  

The goal of this project was primarily to determine whether photocatalytic degradation of phenol 

could be achieved using TiO2 based catalysts. The study was investigated under UV-light and visible light 

conditions.  

The nitrogen modified catalyst (N-TiO2) appeared to achieve the best photocatalytic activity in both 

the visible and UV spectrum after a 2-hour irradiation period. In the visible region, a 5.7% conversion was 

observed, a magnitude over two times greater than the 2.2% conversion observed for the non-modified TiO2 

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

5.4

5.5

5.6

1 2 3 4 5

P
h
en

o
l 

C
o
n
ce

n
tr

at
io

n
 (

1
0

⁴)
 M

Hours

Cu-N-TiO2

N-TiO2



15 

 

catalyst (Figure 5). Similarly, a 5.7% conversion was observed in the UV region, a magnitude over 7 times 

greater than the 0.8% conversion observed for the non-modified TiO2 catalyst (Figure 9). This suggests that 

nitrogen may have effectively decreased the band gap energy of the catalyst, allowing electrons to be 

promoted under visible light wavelengths (589nm) and subsequent degradation to occur. Over a 4-hour 

irradiation period in the visible light region, it was found that phenol concentration decreased steadily over 

time, as shown in Figure 8. The overall conversion after 4 hours was 3.6%, lower than the conversion 

observed from the 2-hour irradiation period. In the UV region, phenol concentration also decreased over a 

4-hour irradiation period and an overall conversion of 4.0% was observed (Figure 11). Again, a conversion 

less than that observed over the 2-hour irradiation period. The reason the observed overall conversion is 

less than expected is likely due to sources of error that may have affected this project and will be discussed 

subsequently.  

Errors are likely associated with limitations of the equipment. Since the project was done with very 

dilute phenol concentrations on the order of 10-4 M, it is possible that variation was observed due to 

limitations of the spectrophotometer used. An additional source of error may result from absorption effects. 

Phenol likely absorbed onto the surface of the catalyst while solution underwent one hour of mixing with 

no light irradiation. Therefore, the first reading recorded using the UV-Vis was taken while phenol was 

likely absorbed to the catalyst surface. Once light was irradiated, it is possible that the increasing of 

temperature in solution caused phenol to desorb from the catalyst. The second reading taken by the UV-

Vis may have been affected by the adsorption-desorption process.  

The copper and nitrogen modified catalyst (Cu-N-TiO2) also appeared to improve photocatalytic 

activity in the visible light region. After a 2-hour irradiation period of visible light, a 5.0% conversion was 

observed, approximately double that of the non-modified TiO2 catalyst (Figure 5). Further, after a 4-hour 

irradiation period, a steady decrease in phenol concentration was observed and overall conversion was 9.3% 

(Figure 8). This indicates that nitrogen may have decreased the band gap energy, therefore allowing the 

degradation reaction to occur under visible light conditions. However, the Cu-N-TiO2 catalyst did not 
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appear to promote photocatalysis in the UV region. Negligible conversion was observed over the 2-hour 

irradiation period (Figure 9), as well as over the 4-hour irradiation period (Figure 11). In fact, concentration 

appeared to increase marginally over time, which is strange. This is further evidence that error played a role 

in this project as discussed previously. The discovery of negligible conversion in the UV region suggests 

the ratio of copper to nitrogen modification on the catalyst was not optimal. Continuation of this project 

would require a systematic study on the optimal ratio of copper to nitrogen that would most effectively 

improve photocatalytic activity.  

The copper modified catalyst (Cu-TiO2) demonstrated unexpected catalytic performance results. 

Based on the UV-Vis data, the absorbance under wavelengths of 280-300 nm was higher before irradiation 

compared with that after irradiation, especially in the case of UV irradiation (Figure 10). Meanwhile, the 

peak absorbance appeared to remain approximately the same. Further research is required to explain these 

effects.  

6.0 Conclusions 

 This study explored the feasibility of using visible light to degrade phenol in wastewater 

via photocatalysis. While TiO2 is a commercial catalyst, commonly used and widely studied in 

photocatalysis, it is not effective under visible light conditions. As a result, the effect of copper and nitrogen 

modification to the TiO2 catalyst was studied under visible and UV light conditions. The catalysts studied 

were: TiO2, N-TiO2, Cu-TiO2, and Cu-N-TiO2. It was found that nitrogen is an effective modifier. Data 

suggested nitrogen may decrease the band gap energy, allowing the photocatalytic process to occur in the 

visible region. Copper was not found to have substantial effects on degradation and requires further study. 

The Cu-N-TiO2 catalyst needs to be further studied to optimize the copper to nitrogen ratio and improve 

photocatalytic performance. The ability to achieve efficient photocatalysis in the visible region could be 

revolutionary to wastewater treatment in industry as visible light is free and readily available. 
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Appendix 
 

Visible Light Conditions 

 

 

Figure 12. The UV-Vis Absorbance Spectra using the TiO2 Catalyst in the Visible Spectrum (2-hour irradiation period). 

 

 

 

Figure 13. The UV-Vis Absorbance Spectra using the Cu-N-TiO2 Catalyst in the Visible Spectrum (2-hour irradiation period). 

 

0

0.5

1

1.5

2

2.5

240 250 260 270 280 290 300

A
b
o
sr

b
an

ce

Wavelength (nm)

TiO2

mixing 1 hour

Visible 2 hours

0

0.2

0.4

0.6

0.8

1

1.2

1.4

240 250 260 270 280 290 300

A
b
so

rb
an

ce

Wavelength

Cu-N-TiO2

Mixing 1 hour

Visible Light 2 hours



19 

 

UV Light Conditions 

 

 

Figure 14. The UV-Vis Absorbance Spectra using the TiO2 Catalyst in the UV Spectrum (2-hour irradiation period). 

 

 

 

Figure 15. The UV-Vis Absorbance Spectra using the N-TiO2 Catalyst in the UV Spectrum (2-hour irradiation period). 
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Figure 16. The UV-Vis Absorbance Spectra using the Cu-N-TiO2 Catalyst in the UV Spectrum (2-hour irradiation period). 
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