217,137 research outputs found

    Kinetic parameter estimation from TGA: Optimal design of TGA experiments

    Get PDF
    This work presents a general methodology to determine kinetic models of solid thermal decomposition with thermogravimetric analysis (TGA) instruments. The goal is to determine a simple and robust kinetic model for a given solid with the minimum of TGA experiments. From this last point of view, this work can be seen as an attempt to find the optimal design of TGA experiments for kinetic modelling. Two computation tools were developed. The first is a nonlinear parameter estimation procedure for identifying parameters in nonlinear dynamical models. The second tool computes the thermogravimetric experiment (here, the programmed temperature profile applied to the thermobalance) required in order to identify the best kinetic parameters, i.e. parameters with a higher statistical reliability. The combination of the two tools can be integrated in an iterative approach generally called sequential strategy. The application concerns the thermal degradation of cardboard in a Setaram TGA instrument and the results that are presented demonstrate the improvements in the kinetic parameter estimation process

    HET acid based oligoesters – TGA/FTIR studies

    Get PDF
    One of the important reactive halogenated dicarboxylic acids used in the synthesis of flame retardant unsaturated polyester resins is 1,4,5,6,7,7-hexachlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid (HET acid). In the present investigation four different oligoesters are synthesized using HET acid as the diacid component and 1,2-ethane diol, 1,2-propane diol, 1,3-propane diol and 1,4-butane diol as the aliphatic diols. Melt condensation technique in vacuum is used for the synthesis of the oligoesters. The number average molecular weights of the oligoesters are determined using end group analysis. The degree of polymerization is estimated to be 3–5. The structural characterization is done using FTIR and NMR (1H and 13C) techniques. In the present investigation, TGA-FTIR studies for the different oligoesters are carried out in nitrogen atmosphere. The materials are heated from ambient to 600 °C at a heating rate of 20 °C/min. The main volatile products identified are CO, HCl, H2O, CO2, hexachlorocyclopentadiene and HET acid/anhydride. The evolution profile of these materials with respect to the structure of the oligoesters is discussed in detail and presented. The importance of β-hydrogens in the diol component and the plausible mechanism for the flame retardant behavior of these oligoesters are presented

    Microencapsulation Yield Assessment Using TGA

    Get PDF
    In this study, microcapsules containing different contents of different kinds of fragrances and with a regular spherical shape, 2,0–8,0 µm diameter, were synthesized in various core:shell ratios. Mint and cuir fragrances were successfully encapsulated in poly(urea-formaldehyde) (PUF) shell via in-situ polymerization. This was confirmed by optical microscope, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) studies. By observation from thermogravimetric analysis (TGA), it was found a relation between thermal gravimetric curves and the amount of fragrance encapsulated, which was later contrasted by ultraviolet-visible spectroscopy. In this way, comparatively, the yield percentage values can be quantitatively defined with a sufficient degree of accuracy by TGA methodPostprint (author's final draft

    TGA/FTIR: An Extremely Useful Technique for Studying Polymer Degradation

    Get PDF
    Thermogravimetric analysis coupled to Fourier transform infrared spectroscopy, TGA/FTIR, has been used to probe the degradation of several polymeric systems. These include poly(methyl methacrylate) in the presence of various additives, graft copolymers of acrylonitrile-butadiene-styrene and styrene-butadiene with sodium methacrylate and styrene with acrylonitrile, blends of styrene-butadiene block copolymers with poly(vinylphosphonic acid) and poly(vinylsulfonic acid), and cross-linked polystyrenes. Additives may interact with poly(methyl methacrylate) by coordination to the carbonyl oxygen to a Lewis acid and the subsequent transfer of an electron from the polymer chain to the metal atom or by the formation of a radical which can trap the degrading radicals before they can undergo further degradation. When an inorganic char-former is graft copolymerized onto a polymer, there is a good correlation between TGA behavior in an inert atmosphere and thermal stability in air, but this is not true when the char is largely carbonific

    Requirements document for mini system test unit

    Get PDF
    The mini system test unit (STU) for the Trace Gas Analyzer (TGA) is defined. The interface signals of the components used to implement the STU are also defined. The mini STU is used to support pre-flight ground test operations. The STU indications of TGA operation (organic and carbon monoxide analyses) and its ability to monitor gas chromatograph and mass spectrometer test signals are included

    PGGA: A predictable and grouped genetic algorithm for job scheduling

    Get PDF
    This paper presents a predictable and grouped genetic algorithm (PGGA) for job scheduling. The novelty of the PGGA is twofold: (1) a job workload estimation algorithm is designed to estimate a job workload based on its historical execution records, (2) the divisible load theory (DLT) is employed to predict an optimal fitness value by which the PGGA speeds up the convergence process in searching a large scheduling space. Comparison with traditional scheduling methods such as first-come-first-serve (FCFS) and random scheduling, heuristics such as a typical genetic algorithm, Min-Min and Max-Min indicates that the PGGA is more effective and efficient in finding optimal scheduling solutions

    Kinetic model identification and parameters estimation from TGA experiments

    Get PDF
    The presented work is a part of an ongoing research effort on the development of a general methodology for the determination of kinetic models of solid thermal decomposition under pyrolysis conditions with thermogravimetric analysis (TGA) devices. The goal is to determine a simple and robust kinetic model for a given solid with the minimum of TGA experiments. From the latter point of view, this work can be seen as the optimal design of TGA experiments for pyrolysis kinetic modelling. In this paper, a general procedure is presented and more precise results are given about the influence of the sensitivity matrix on the estimation of the kinetic parameters and about the important influence of the specific TGA runs used for parameter estimation on the precision of the fitted parameters. The first results are shown for simulated applications; in the final part, the presented results concern cellulose pyrolysis in a Setaram TGA device

    Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides

    Get PDF
    In an effort to develop reversible metal borohydrides with high hydrogen storage capacities and low dehydriding temperature, doping LiBH4 with various metal halides and hydrides has been conducted. Several metal halides such as TiCl3, TiF3, and ZnF2 effectively reduced the dehydriding temperature through a cation exchange interaction. Some of the halide doped LiBH4 are partially reversible. The LiBH4 + 0.1TiF3 desorbed 3.5 wt % and 8.5 wt % hydrogen at 150 and 450 °C, respectively, with subsequent reabsorption of 6 wt % hydrogen at 500 °C and 70 bar observed. XRD and NMR analysis of the rehydrided samples confirmed the reformation of LiBH4. The existence of the (B12H12)−2 species in dehydrided and rehydrided samples gives insight into the resultant partial reversibility. A number of other halides, MgF2, MgCl2, CaCl2, SrCl2, and FeCl3, did not reduce the dehydriding temperature of LiBH4 significantly. XRD and TGA-RGA analyses indicated that an increasing proportion of halides such as TiCl3, TiF3, and ZnCl2 from 0.1 to 0.5 mol makes lithium borohydrides less stable and volatile. Although the less stable borohydrides such as LiBH4 + 0.5TiCl3, LiBH4 + 0.5TiF3, and LiBH4 + 0.5ZnCl2 release hydrogen at room temperature, they are not reversible due to unrecoverable boron loss caused by diborane emission. In most cases, doping that produced less stable borohydrides also reduced the reversible hydrogen uptake. It was also observed that halide doping changed the melting points and reduced air sensitivity of lithium borohydrides

    Thermogravimetric and distillation studies on mercury, antimony and arsenic sulfides

    Get PDF
    Thermogravimetric studies were made on naturally occurring sulfides of mercury, antimony and arsenic to determine activation energies and Arrhenius rates of reaction in vacuum and in atmospheres of air and nitrogen. Of the three sulfides only antimony showed an appreciable change in rate of reaction for the different test conditions. Distillation results on three flotation concentrates from Alaska mining operations showed that cinnabar (mercury sulfide) could be distilled in a closed system, with over 99 percent recovery of the mercury as metal when the sulfur was reacted with iron. Over 98 percent mercury recovery was obtained from a cinnabar-stibnite (antimony sulfide) concentrate, with less than 1 percent of the antimony distilled from the furnace charge. Cinnabarrealgar-orpiment (arsenic sulfides) could not be separated by distillation and large quantities of soot (condenser residue) formed with the metallic mercury in the condenser

    Study on the thermal stability of Polystyryl surfactants and its modified clay nanocomposites

    Get PDF
    Five oligomeric styrene surfactants, N,N,N-trimethylpolystyrylammonium, N,N-dimethyl-N-benzylpolystyrylammonium, N,N-dimethyl-N-hexadecylpolystyrylammonium, 1,2-dimethyl-3-polystyrylimidazolium, and triphenylpolystyrylphosphonium chlorides were synthesized and used to prepare organically modified clays. Both styrene and methyl methacrylate nanocomposites were prepared by melt blending and the type of nanocomposite was evaluated by X-ray diffraction and transmission electron microscopy. The thermal stability of the organically modified clays and the nanocomposites were studied by thermogravimetric analysis; these systems do give clays which have good thermal stability and may be useful for melt blending with polymers that must be processed at higher temperatures
    corecore