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a b s t r a c t

This work presents a general methodology to determine kinetic models of solid thermal

decomposition with thermogravimetric analysis (TGA) instruments. The goal is to determine

a simple and robust kinetic model for a given solid with the minimum of TGA experiments.

From this last point of view, this work can be seen as an attempt to find the optimal design

of TGA experiments for kinetic modelling. Two computation tools were developed. The

first is a nonlinear parameter estimation procedure for identifying parameters in nonlinear

dynamical models. The second tool computes the thermogravimetric experiment (here, the

programmed temperature profile applied to the thermobalance) required in order to identify

the best kinetic parameters, i.e. parameters with a higher statistical reliability. The combi-

nation of the two tools can be integrated in an iterative approach generally called sequential
Cardboard strategy. The application concerns the thermal degradation of cardboard in a Setaram TGA

instrument and the results that are presented demonstrate the improvements in the kinetic

parameter estimation process.

cussed later, kinetic parameters estimation from TGA data
can give scattered and non-acceptable results. To avoid this
1. Introduction

This work is part of an ongoing research effort to develop a
practical, universal, and minimal-time consuming comput-
ing tool that will be helpful in determining reliable kinetic
parameters occurring in the modelling of any chemical and/or
physical problem such as solids combustion, pyrolysis, cal-
cination, stabilization, and other phenomena investigated in
our laboratory. In building the reaction schemes for such solids
decomposition, the estimation of kinetic parameters repre-
sents a crucial step in chemical modelling. This paper’s focus
is on the determination of kinetic parameters of solid ther-
mal degradations from data obtained by a thermal gravimetric
analysis (TGA) instrument. TGA is a technique for thermal
analysis. A given definition of thermal analysis is “A group
of techniques in which a physical property of a substance
and/or its reaction products is measured as a function of
temperature while the substance is subjected to a controlled

temperature program” (Mackenzie, 1979). Thermal gravimet-
ric analysis consists in measuring the time evolution of a
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sample mass under given conditions of temperature. Two
modes of thermogravimetry are generally found to be used
in literature: isothermal mode, in which the sample mass
is recorded as a function of time at constant temperature,
and dynamic (or non-isothermal) mode, in which the sam-
ple is exposed to the effect of a temperature programme,
usually at a linear rate. The majority of recent scientific
studies deal with a single kinetic equation where graphical
and/or linearization methods are used to identify the kinetic
parameters (Varhegy, 2007). For instance, a review of sev-
eral of these methods can be found in Galwey and Brown
(1998) or in Brown et al. (2000). When the reaction scheme
involves more than one reaction, standard graphic methods
are non-adequate and the nonlinear fitting represents the only
alternative. However, nonlinear numerical methods need to
be implemented with precaution and efficiency to avoid the
determination of physically non-acceptable values. As dis-
drawback, a numerical estimation procedure to determine
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Nomenclature

a mass stoichiometric coefficient
A pre-exponential factor (s−1)
Ar pre-exponential factor after reparametrisation

(s−1)
b mass stoichiometric coefficient
E activation energy (J mol−1)
Er activation energy after reparametrisation (K−1)
F Fisher information matrix
J1 fitting criterion
J2 optimum design criterion
kr rate constant (s−1)
p parameter
R gas constant (J mol−1 K−1)
t time (s)
T Temperature (K)
W weighting matrix
x state variable
X sensitivity matrix
y dependent variable or normalized mass
z or Z output variable or total normalized mass

Greek symbols
� heating rate (K min−1 or ◦C min−1)
� experimental measurement (vector)
� level of the indifference region
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the sample. The kinetic parameters are respectively the pre-
he kinetic parameters from TGA experiments simultaneously
nder different thermal conditions was developed. Addition-
lly, a technique based on the design of the optimal TGA
xperiments was conceived. The goal of this technique is to
mprove the reliability and the confidence in the estimated
arameters by determining the best experience to achieve this
oal.

The objective of this paper is to give a detailed presentation
f the methodology that was developed and to provide some

nitial results for the thermal degradation of a complex solid,
ardboard. In the first part, the methodology and the associ-
ted numerical tools for the kinetic parameter estimation and
or determining the optimal TGA experiment are described.
he theoretical background to parameter identification and
xperimental design is explained. Some practical information
n the current application are also discussed. In the second
art, the experimental device and the materials used are pre-
ented. Finally, the paper is concluded by a description of the
rst experimental results obtained with samples of cardboard.

. Kinetic parameter estimation problem
nd optimal design problem

inetic studies with TGA instruments are typically conducted
nder isothermal conditions or non-isothermal conditions,

.e. with a linear time evolving temperature. Some experi-
ental difficulties can exist with isothermal experiments: a

ignificant part of the reaction may occur during the setting of
he experimental temperature at the beginning of the experi-

ent; for instance, see Maciejewski (2000) for more precision
bout this subject. One advantage of the isothermal conditions

s the homogeneous sample temperature after the isothermal
eaction temperature has been reached, whereas in non-
isothermal mode, a temperature gradient in the sample can
occur due to the resistance of heat conduction in the sample
and the resistance of outer heat transfer. A way for compen-
sating for this effect is to use low heating rates. Isothermal and
non-isothermal methods have been widely used in the litera-
ture but papers comparing the results obtained with the two
methods are rare (Làzaro et al., 1998). Furthermore, it is not
easy to compare the scientific studies published for a given
product: the experimental conditions (equipment, technolo-
gies, operating conditions, sample conditioning, etc.) are often
different and not always well known; moreover, the models,
the data treatments and the computational methods are never
the same (Maciejewski, 2000).

2.1. Direct problem: kinetic model

The first step consists in choosing the kinetic model, i.e.
the mathematical model describing the time evolution of the
different mass fractions during the thermal degradation pro-
cess. The complexity of the chosen model depends on the
desired objectives. The thermal degradation of heterogeneous
and complex materials, such as waste or biomass, cannot be
expressed in detail. Simplified reaction schemes with pseudo-
components are generally used. At this stage, a key question
is to decide whether heat and mass transfer processes have to
be taken into account. A large majority of the works assume
the regime of kinetic control, i.e. all influences of internal
and external mass and thermal transfer are neglected and
the sample is assumed to follow the programmed tempera-
ture of the thermobalance perfectly and to have a uniform
temperature. However, sources of error related to the temper-
ature undoubtedly exist: the placement and the accuracy of
the thermocouple, the thermal lag between the sensor and the
sample, and the effect of heats of reaction (Gallagher, 1998).
Some authors have demonstrated the influence of experimen-
tal conditions (for example, Völker and Rieckmann, 2002, or
Roduit et al., 1996). However, some experimental considera-
tions allow the difference between the set-point temperature
and the actual temperature of the sample to be minimized: a
small sample (with a low mass) and a slow heating rate are
generally preferred.

The class of models used in this work is the class of pure
kinetic models. The kinetic model is based on a set of first
order differential equations (ODE) and can be represented by
the following form of equation:

ẏ = f(t, y, p, x) y(t = 0) = y0

z = g(t, y)
(1)

where t is the time, y and ẏ are the set of dependent vari-
ables characterizing the solid kinetic and their derivatives with
respect to time, p represents the set of kinetic parameters to
be identified and x represents the other variables of the model
such as temperature; z corresponds to the model output to
compare with the evolution of loss mass measured with the
thermobalance. If z represents the measured total mass, it can
be obtained by summing all the solid partial mass y. In this
work, all the kinetics are assumed to be modelled with a first
order Arrhenius kinetic model and the state variables y are
the solid normalized mass, i.e. divided by the initial mass of
exponential factor and the activation energy for each reaction
of the chosen model.



The numerical method for solving the set of ordinary dif-
ferential equations is based on the algorithm developed by
Kaps–Rentrop (Press et al., 1992).

2.2. Inverse problem: kinetic parameter estimation

Once the kinetic scheme and the associated equations have
been established, the kinetic parameter estimation prob-
lem can be examined. The minimisation criterion used for
identifying the kinetic parameters is given by the squared dif-
ferences of the model output with the measured normalized
total mass for one or several experiments. Under a vectorial
form, the criterion can be written as follows:

min
p

J1(p) = min
p

1
NexNmi

(� − Z)TW(� − Z) (2)

where Z and �, are respectively the vectors of computed and
measured normalized total mass. W is the inverse measure-
ment error covariance matrix. We have an approximate value
of the measurement variance thanks to blank experiments
(experiments with no sample), where the signal is constant
for some rather long lengths of time (and temperature). From
several blank experiments, the variance have been estimated
to about 10−5.

A version of the Levenberg–Marquardt method was applied
for the parameter estimation problem (Press et al., 1992).

Preliminary results have proven that this inverse prob-
lem was badly conditioned; as some sensitivity coefficient
values were very small. The sensitivity coefficients for the
pre-exponential factors are generally small compared to the
coefficients for activation energies. In practice, this implies
that the Levenberg–Marquardt method only modified a few
kinetic parameters (parameters with the highest values for the
sensitivity coefficients) in order to improve the minimisation
criterion, and some parameters were not changed (parame-
ters with the lowest values for the sensitivity coefficients).
We proceded with a reparametrization in order to improve
the parameter estimation procedure. This reparametrization
consisted in modifying the parameters to achieve a better
homogeneity in the parameter value magnitude and in their
sensitivity coefficient magnitude. Two new kinetic parame-
ters, Ar and Er, were defined from the original ones, A and
E, by the following relations:

Ar = log A

Er = E

R

(3)

The new expression of the rate constant must be equal to the
original and is given by the following equation:

kr = exp Ar exp
(

−Er

T

)
= A exp

(
− E

RT

)
(4)

The benefits of the reparametrization have been presented
in a previous paper concerning the thermal degradation of
cellulose (Reverte et al., 2007).

2.3. Optimal design problem

One of the aims of the optimum experimental design is to plan

experiments in order to maximize the statistical reliability of
some unknown parameters estimated from the experimental
data (Bauer et al., 2000). In our case, we use the approach of
optimum experimental design to determine what are the TGA
experiment(s) to perform, called subsequently optimal experi-
ment(s), for estimating the best kinetic parameters. Here, best
parameters mean the parameters with a higher statistical reli-
ability. In a recent paper, an author states that the laws of
mathematical statistics cannot be useful in finding kinetic
parameters with Thermal gravimetric analysis (Varhegy, 2007).
According to this paper, statistics would not be useful because
the most important experimental errors of TGA runs are
usually neither random nor independent but concern the dif-
ference between the measured temperature and the actual
one. We agree that the generally encountered assumption
that the sample has an uniform temperature equal to the fur-
nace temperature is very restrictive but we think that some
statistics tools can be helpful for the design of TGA runs.
Experimental errors exist such as those due to the measure-
ments of mass and temperature or due to the heterogeneity
of the sample. Our own experience with thermobalances is
that these devices are very sensitive to the influence of many
factors.

The precision of the estimated parameters can be linked to
the notion of the joint confidence region; the word joint indi-
cates that all the estimated parameters are taken into account
simultaneously. The joint confidence region defines a bounded
closed subset of the parameter space that contains the true
value of the parameters with a given probability.

The Fisher information matrix F combines some infor-
mation on the output measurement error by means of the
weighting matrix W, and some information on the sensitivity
of the model output with respect to the parameters through
the sensitivity matrix X:

F = XTWX (5)

For nonlinear model in the parameters, the inverse
of Fisher information matrix (F−1) is an approximation
of the parameter variance–covariance matrix; in fact, it
provides the Cramer–Rao lower bound on the parameter
variance–covariance matrix (Walter and Pronzato, 1997). It
can be demonstrated that the volume of the joint confidence
region is proportional to the square root of the determinant
of the inverse Fisher information matrix. So, the minimum-
sized joint confidence region corresponds to the maximum
of F determinant. An experiment maximizing F will then be
deemed to be optimal. However, because of the nonlinearity
of the model, the matrixes X and F depend on the values of
parameters. An iterative approach can be envisaged with an
improvement for the parameter estimates at each iteration.
This iterative approach, which is generally called sequential
strategy, alternatively combines parameter identification and
design of experiments to improve the value of the parameters.

In this work, we assume that a standard thermobalance is
used; only the variations of the total mass of solid and of the
cell temperature can be recorded in the course of time. The
variables characterizing a particular experiment are:

• the initial mass of the sample,
• the nature and the flow rate of the vector gas,
• the programmed temperature profile applied to the sample.

Because a pure kinetic model is used in this work, no mass

or thermal transfer is taken into account. The solid sample
is assumed homogeneous in temperature and composition.
The initial mass of the sample and the flow rate and the
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(1 +
roperties of the vector gas have no influence with such a
odel. In conclusion, the only input available to improve the

xperimental conditions is the programmed profile of the cell
emperature. In other words, we look for the temperature pro-
le applied to the thermobalance in order to improve the
recision and the reliability of kinetic parameters for a cho-
en kinetic model. One possible approach for the numerical
esolution of this problem requires the discretization of the
emperature profile into finite subintervals inside the interval
f operation. Mathematical functions must be defined to rep-
esent the evolution of the temperature in every subinterval.
n order to avoid complex and unrealizable temperature pro-
les, the mathematical functions chosen are linear functions
or the temperature in respect of time. Another advantage of
sing linear functions is that they will be easy to programme
ith the thermobalance. From a practical point a view, the
roblem consists then in determining the heating rate, i.e.
he slope of the temperature, for each time subinterval. The
ptimum design problem can then be written as follows:

in
�

J2(p) = min
�

det(F−1) (6)

here � is the vector of the successive values of the heating
ate.

Once all the values of � are defined, the evolution of dif-
erent masses is computed by numerical integration on each
ime subinterval. To avoid unrealistic temperature profiles,
ower and upper bounds are defined for the values of �; these
ounds must be chosen according to the thermogravimetric
evice used.

To solve this optimization problem, the well known method
f modified simplex with constraints was used (Nelder and
ead, 1965). Several parameters needed to be defined: reaction

ime, number of subintervals, length of each subinterval, class
f mathematical functions chosen. All these parameters can
e fixed and/or adapted by the numerical procedure. In this
ork, they were all fixed.

.4. Indifference region

ecause the criterion J2 defined in Eq. (6) is neither explicit
or practical to analyse, we need an explicit indicator for the
uantification of the improvement in the identified parame-
ers gained through the optimal experiment(s). The indicator
sed in this paper is the length of the indifference interval for
ach identified parameter.

A indifference region of level � (or �, indifference region) in
he parameter space represents the locus of points p where
Bard, 1974)

J1(p) − J1(p∗)
∣∣ ≤ � (7)

1(p*) is the value of the minimization criterion (Eq. (2)) with the
dentified optimal parameters p*. The region in the parameters
pace where the inequality defined in Eq. (7) is true represents

Hii =
J1(p1, . . . , p∗

i

he locus where the values of p can be changed without sig-
ificantly modifying the optimal value of the criterion J1. The

ndifference region can be viewed as a measure of the sensi-
tivity of the determination of parameters. A large indifference
region would means that p can be chosen far away from p*
without deteriorate the quality of fitting, and thus leading to a
bad determination of the model. By writing the second order
Taylor formula for the function J1(p), it is easy to develop an
approximate indifference interval for each identified parame-
ter pi:

pi ∈
[

p∗
i −

(
2�

Hii

)1/2

, p∗
i +

(
2�

Hii

)1/2
]

(8)

where � is the allowed maximum for the absolute value of
the difference between J1(p) and J1(p*) (see Eq. (7)). � can be
chosen as a percentage of the optimal minimization crite-
rion; for instance, a 5%—indifference region corresponds to
|J1(p) − J1(p*)| < � = 0.05*J1(p*). Hii represents the diagonal ele-
ments of the Hessian matrix computed for J1(p*). Practically,
they are computed by second order central finite difference
with ε = 10−5:

ε), . . . , p∗
np) + J1(p∗

1, . . . , p∗
i
(1 − ε), . . . , p∗

np) − 2J1(p∗)

(εpi)
2

(9)

From Eq. (8), much information about the indifference
region can be gained by the analysis of the Hessian matrix.
The relative sensitivities between the parameters pi can be
estimated from the respective lengths of the indifference
intervals.

3. Experimental instruments and materials

Experiments were carried out with a SetaramTM 92-16.18 ther-
mogravimetric analyser (TGA). The thermogravimetric unit
is composed of a thermobalance: an electronic microbalance
using a system of a balance beam and a furnace composed
of a vertical tubular graphite tube. Operating temperatures
ranged between room temperature and 1750 ◦C. Cylindrical
platinum crucibles were used. Experiments were conducted
under a flow of an inert gas (nitrogen) at a constant flow-rate
(33 ml min−1) controlled with a mass flow controller. Because
the buoyancy exerted on the sample decreases with increasing
temperature, an apparent mass gain is observed (about 1 mg).
So a preliminary “blank experiment” was carried out before
each experiment. A “blank experiment” consists in doing an
experiment, identical to the actual experiment, except that
there is no sample (an empty crucible is used). The evolution
of measured mass of the blank experiment is subtracted from
the recorded mass of the “actual experiment”. Finally, in order
to protect the balance from reaction with an incoming reactant
gas stream, nitrogen was passed through the balance chamber
for 4 h before each experiment.

Cardboard is a complex material, essentially composed of
cellulose, hemicelluloses and lignin, and represents about 30%
of municipal solid waste. Few studies have been devoted to
the kinetics of its thermal degradation (David et al., 2003).
The cardboard samples came from various forms of packag-
ing. They were finely pulverized by cryogenic grinding. For all

the experiments presented below, the sample mass was the
same (3.5 mg). With such a small mass, we assume the thermal
gradient inside the sample is small.



Table 1 – Kinetic parameters and indifference intervals for thermal degradation of cardboard; one set of parameters is
identified for each thermogravimetric experiment

Experiment: heating
rate (◦C min−1)

log A1 (min−1) E1 (J mol−1) log A2 (min−1) E2 (J mol−1) a b

#1: 5 21.30 ∈ [20.09–21.69] 115,249 ± 1887 10.91 ∈ [7.17–14.67] 74,136 ± 2136 0.35 ± 0.08 0.30 ± 0.06
#2: 10 22.27 ∈ [21.86–22.68] 117,502 ± 1972 10.00 ∈ [7.00–12.98] 65,730 ± 5490 0.37 ± 0.08 0.31 ± 0.06

11.67 ∈ [8.52–14.79] 73,055 ± 5814 0.35 ± 0.08 0.30 ± 0.06

Fig. 1 – Thermal decomposition of cardboard at 5, 10 and
15 ◦C min−1. Comparison between experimental curves (—)
and fitted curves (- - -) using Eq. (10). The kinetic
parameters are different for each fitted curve.

and 64.1 × 10−5 with the parameters identified for all the
experiments. However, the comparison of the indifference

Table 2 – Kinetic parameters and indifference intervals
for thermal degradation of cardboard based on a unique
identification using the three thermogravimetric
experiments

Experiment: heating rate (◦C min−1) 5/10/15
log A1 (min−1) 27.33 ∈ [26.66 − 27.99]
E1 (J mol−1) 142,045 ± 1010
log A2 (min−1) 17.24 ∈ [16.28 18.20]
E (J mol−1) 103,185 ± 2571
#3: 15 22.04 ∈ [21.65–22.43] 115,016 ± 1911

4. Results

4.1. Identification of kinetic parameters of cardboard
degradation

The reaction scheme assumed here for the thermal degra-
dation of cardboard was proposed by David et al. (2003):

cardboard
k1−→a I1 + a′ G1 and a I1

k2−→ b char + b′ G2.

The cardboard, noted C, is degraded by two successive
reactions. Gaseous products (G1) and an intermediary solid
specie (I1) are produced by the first reaction; a solid residue,
called char, and other gases (G2) are the products of a second
reaction. Mass stoichiometric coefficients a, a′, b and b′ were
defined for representing the mass proportion between solid
and gaseous products for each reaction. The kinetic model (or
direct model) for the solid species associated with the reaction
scheme is

dyC

dt
= −k1yC = −A1 exp

(
− E1

RT

)
yC

dyI1

dt
= a[k1yC − k2yI1] = a

[
A1 exp

(
− E1

RT

)
yC

−A2 exp
(

− E2

RT

)
yI1

]
dychar

dt
= bk2yI1 = bA2 exp

(
− E2

RT

)
yI1

z = yC + yI1 + ychar

(10)

where yC, yI1, ychar and z respectively represent the normal-
ized mass of cardboard, solid intermediary, solid residue and
the total normalized mass. T is the temperature. A first order
Arrhenius kinetic model is used for the two reactions, then
six parameters must be identified: the four Arrhenius param-
eters (A1, E1, A2, E2); a and b, the two mass stoichiometric
coefficients.

The thermogravimetric data recorded during the non-
isothermal decomposition of the cardboard sample for three
heating rates (5, 10 and 15 ◦C min−1) were used for the deter-
mination of the kinetic parameters of the model given above.
For each experiment, 2951 items of experimental data were
recorded (2951 was fixed with the default sampling time for
the first experiment). The experimental conditions such as
sample mass, atmosphere and gas flow rate were identical
in all experiments. In Fig. 1, the experimental data are pre-
sented and compared with the theoretical curves computed
with the identified kinetic parameters. Experimental data
correspond to solid lines, while dashed lines represent the
calculated curves. First, the kinetic parameters were identi-
fied separately for each experiment and their values are given
in Table 1. Simulated curves and experimental curves are very
close because the optimal set of parameters was found inde-
pendently for each experiment. By examination of Table 1,
we notice that while the kinetic parameter values are close

for each experiment, they are, however, different; the more
scattered values are for the parameters of the second reaction
(log A2 and E2) identified for the experiment with an heating
rate of 10 ◦C min−1. The indifference intervals for each param-
eter are also given in Table 1. They are larger for the parameters
of reaction (2). This result proves the model is more sensitive
to the parameters of the first reaction.

In a second step, the identification procedure was carried
out again with the three sets of experimental data (heating
rate of 5, 10 and 15 ◦C min−1) as a whole. The kinetic param-
eters obtained are given in Table 2. Except for the coefficients
a and b, the new values of the parameters are significantly
different compared to the previous values given in Table 1.
If the minimization criterion (Eq. (2)) for each experimental
curve is compared using either the parameters identified for
each experiment or the parameters identified for all the exper-
iments, we found a ratio of about 10: J1 is respectively equal to
6.0 × 10−5, 2.9 × 10−5 and 4.1 × 10−5 for the experiment with a
heating rate of 5, 10 and 15 ◦C min−1 with the parameters iden-
tified for each experiment and equal to 80.9 × 10−5, 15.8 × 10−5
2

a 0.37 ± 0.05
b 0.31 ± 0.05



Fig. 2 – Thermal decomposition of cardboard at 5, 10 and
15 ◦C min−1. Comparison between experimental curves (—)
and fitted curves (- - -) using Eq. (10). The kinetic
parameters are the same for each fitted curve.
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Fig. 3 – Upper figure: Comparison between experimental
curves (—) and fitted curves (- - -) with the kinetic
parameters identified from the optimal experiment. Lower
figure: Optimal temperature profile computed for the
thermal decomposition of cardboard.
ntervals shows they have been reduced with the unique set of
arameters. This is particularly true for the parameters of the
econd reaction. We can conclude that parameters simultane-
usly found for several experiments with different operating
onditions allow a reduced estimated range (i.e. smaller indif-
erence intervals) but with worse fitting capabilities. This last
oint can be visualised with Fig. 2 where the experimental
ata are compared with the theoretical curves obtained with
unique set of kinetic parameters. We can observe the fit-

ing capabilities mainly deteriorate for the experiment with a
eating rate of 5 ◦C min−1.

.2. Optimal design of a thermogravimetric
xperiment

he first step is to look for the thermogravimetric experiment
hat makes it possible to find the kinetic parameters with the
mallest minimum-sized joint confidence region. As stated
efore, a total experiment time and a number of intervals,

n which the temperature will linearly evolve, must be cho-
en. Moreover, initial values for the parameters are needed.
n this study, we present the case where height intervals of
min were fixed for the optimal experiment sought. The max-

mum possible heating rate allowed was 10 ◦C min−1 so as
o try to avoid too high a temperature gradient inside the
ample. The values of the parameters identified for the exper-
ment with a heating rate of 10 ◦C min−1 were chosen as initial
inetic parameters and the heating rates for each subinterval
ere fixed to 10 ◦C min−1 for initialisation. About 1400 iter-

tions were necessary to maximize the criterion J2: its value
ncreased from 2 × 102 to 3.9 × 1016. The optimal values for the
ight different heating rates are respectively 3.29, 10.00, 10.00,
0.00, 5.52, 3.89, 0.00 and 0.00. The optimal temperature profile
an be viewed in the lower part of Fig. 3.

After the evaluation of the optimal experiment, we now
eed to carry it out. So, in a second step, a thermogravimetric
xperiment, whose programmed temperature profile is equal
o the optimal temperature profile evaluated in the previ-

us step, is carried out. From these new experimental data,
kinetic parameter identification procedure can be started.

he optimal experiment has to be simulated with the model.
The ODE system is resolved using the optimal temperature
profile as inputs for the variable T. The results of the param-
eter identification are given in Table 3. The comparison with
the results obtained for the experiment with a constant heat-
ing rate of 10 ◦C min−1 (same number of experimental data)
shows that the values of fitted parameters have evolved and a
smaller indifference interval can be noticed; it is particularly
true for the two mass stoichiometric coefficients with a reduc-
tion of their indifference interval by a factor between 4 and 6.
In order to estimate the quality of the new kinetic parameters,
the experimental curve and model-predicted mass evolution
versus time are compared in Fig. 3(upper part). The two curves
are very close. However, if we consider the numerical value
of the criterion J1, its value increases from 0.086 (fitting with
the experiment with a constant heating rate of 10 ◦C min−1) to
0.206 (optimal experiment).

In attempting to analyse the results obtained, it can be
observed that, as expected, the optimal experiment seems to
allow the improvement of the parameters; this is confirmed
from a numerical point of view: a very large increase in the
criterion J2 and a reduction in the indifference intervals for all
the parameters are observed. Unfortunately, firm explanations
cannot be drawn about the “shape” of the temperature profile
computed for the optimal experiment. In a previous study, the
optimal temperature profile for identifying the kinetic param-
eters of the thermal degradation of cellulose (Reverte et al.,
2007) were researched; the reaction schemes for the cellu-
lose degradation are fairly well known and we used a scheme
consisting in two concurrent reactions (Bradbury et al., 1979).
The results showed that the heating rate of the time intervals
where the main mass loss occurs were significantly reduced
during the optimal experiment. We interpreted this to mean
that the numerical procedure had increased the duration of
the main degradation phase by reducing the heating rate. This
length of time corresponded to the intervals in which the sen-
sitive coefficients had the highest values. It was proven by the
plot of the sensitive coefficients and it was observed that the

duration where the main thermal degradation took place cor-
responded to the times where the parameters were the most
sensitive to the measured data.



Table 3 – Kinetic parameters and indifference intervals for thermal degradation of cardboard; comparison between the
experiment with a constant heating rate of 10 ◦C min−1 and the optimal experiment

Experiment: heating rate
(◦C min−1)

log A1 (min−1) E1 (J mol−1) log A2 (min−1) E2 (J mol−1) a b

10 22.27 ∈ [21.86–22.68] 117,502 ± 1972 10.00 ∈ [7.00–12.98] 65,730 ± 5490 0.37 ± 0.08 0.31 ± 0.06
Optimal run 24.04 ∈ [23.81–24.27] 130,189 ± 1284 10.00 ∈ [9.65–10.35] 44,143 ± 3278 0.45 ± 0.02 0.37 ± 0.01

Fig. 4 – Time evolution of sensitivity coefficients for
parameters A1r and E1r with the optimal temperature
profile (continuous line) and with a constant heating rate of
10 K min−1 (dashed line).

Fig. 6 – Time evolution of sensitivity coefficients for
parameters a and b with the optimal temperature profile
(continuous line) and with a constant heating rate of
10 K min−1 (dashed line).
In the case of the cardboard experiments no such con-
clusion is drawn. It seems rather obvious that the optimal
temperature profile was elaborated for a quick heating with-
out going beyond a temperature of 400 ◦C. Some information
can be deduced from the plot of the evolution of sensitiv-
ity coefficients over time (Figs. 4–6). Even with the applied
reparametrization, differences in magnitude exist for the
sensitivity coefficients. The time evolution of the sensitivity
coefficients for parameters A and E with the optimal exper-
1r 1r

iment and with the experiment at a constant heating rate
are plotted in Fig. 4. The two kinetic parameters of the first

Fig. 5 – Time evolution of sensitivity coefficients for
parameters A2r and E2r with the optimal temperature
profile (continuous line) and with a constant heating rate of
10 K min−1 (dashed line).
reaction (A1r and E1r) present the higher coefficient values (to
compare with Figs. 5 and 6); these values increase with the
progress of the mass loss. In fact, it is easy to show they are
directly proportional to the time derivative of the mass loss:
the maximum value of these two coefficients is approximately
at a time of 20 min corresponding to the time of the maximum
for the derivative of the mass loss. In Fig. 5, similar plots have
been produced for the parameters A2r and E2r. The magnitude
of the kinetic parameters of the second reaction (A2r and E2r)
is smaller and increases from about the middle of the simula-
tion. The plotting of the estimated partial mass yC, yI1 and ychar

(not shown here) proves that the sensitivity coefficients of A2r

and E2r are directly proportional to the mass of produced char
(ychar). An identical comment can be made for the sensitivity
coefficient of b (Fig. 6). Now, by comparing the two evolutions
of sensitivity coefficients for a given parameter, we can bet-
ter understand why the temperature remained constant at
the end of the run. For the parameters of the first reaction,
there is no significant difference, except a time delay can be
observed in Fig. 4. Some real differences exist in the evolu-
tion of sensitivity coefficients for A2r and E2r (Fig. 5) and even
for the coefficient a (Fig. 6): with a constant heating rate, these
coefficients decrease during the end of the run, while with the
optimal temperature profile (and the temperature maintained
constant during the last subintervals), the coefficient values
do not decrease. We can assume this to be one of the rea-
sons explaining the final evolution of the temperature during
the optimal run. Finally, the last remark concerns the “per-
turbations” observed for all the curves with the experimental
experiment. These “perturbations” occur at a time when the

heating rate is modified, and are without doubt due to a lack of
precision in the numerical evaluation of the sensitivity coeffi-
cients at these instants.



5

I
t
f
T
f
e
r
f
a
t
h
r
e
o
o
w

fi
u
t
c
s
a
m
o
m

r

B

B

B

B

Walter, E. and Pronzato, L., (1997). Identification of Parametric Models
. Conclusion

n this paper, we have presented some results concerning
he evaluation of an optimal thermogravimetric experiment
or increasing the reliability of kinetic parameter estimates.
he results were illustrated by determining a kinetic model

or cardboard thermal degradation. Through the approach
xplained above, parameters with a smaller joint confidence
egion and with reduced indifference intervals have been
ound. However, we need to confirm these first results with

thorough analysis; for example, what is the influence of
he variables of the method whose values have been fixed
ere (number and length of subintervals, maximal heating
ate, etc.)? What would be the benefit of combining the initial
xperimental run and the optimal run for the identification
f kinetic parameters? How many TGA runs are necessary in
rder to obtain the same confidence criterion as the one that
as obtained with the optimal run?

However, because of the poor extrapolation capacity of the
tted parameters, a conclusion of this work is that the model
sed here is without doubt not suitable to well represent the
hermal degradation of cardboard under different operating
onditions. Different models must be tested with the pre-
ented procedure. In a near future, we plan to use a similar
pproach based on the experimental optimal design for the
odel discrimination, i.e. the evaluation and the realization of

ptimal TGA experiments for discriminating the best kinetic
odel among several proposed models.
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methods for optimum experimental design in DAE systems. J
Comput Appl Math, 120(1/2): 1–25.

radbury, A.G.W., Shafizadeh, F. and Sakai, Y., 1979, A kinetic
model for pyrolysis of cellulose. J Appl Polym Sci, 23(11):

3271–3280.

rown, M.E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere,
J., Burnham, A., Opfermann, J., Strey, R., Anderson, H.L.,
Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H.O.,
Chao-Rui Lii, Tong, B.T., Roduit, B., Malek, J. and Mitsuhashi,
T., 2000, Computational aspects of kinetic analysis Part A. The
ICTAC kinetics project—data, methods and results.
Thermochim Acta, 355: 125–143.

David, C., Salvador, S., Dirion, J.-L. and Quintard, M., 2003,
Determination of a reaction scheme for cardboard thermal
degradation using thermal gravimetric analysis. J Anal Appl
Pyrol, 67(2): 307–323.

Gallagher, P.K., 1998, Thermogravimetry and
thermomagnetometry, in Handbook of Thermal Analysis and
Calorimetry, Brown, M.E. (ed) (Elsevier Science B.V,
Amsterdam), pp. 225–278.

Galwey, A.K. and Brown, M.E., 1998, Kinetic background to
thermal analysis and calorimetry, in Handbook of Thermal
Analysis and Calorimetry, Brown, M.E. (ed) (Elsevier Science
B.V, Amsterdam), pp. 147–224.
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