26,460 research outputs found
Tension-compression asymmetry modelling: strategies for anisotropy parameters identification
This work presents details concerning the strategies and algorithms adopted in the fully implicit FE solver DD3IMP to model the orthotropic behavior of metallic sheets and the procedure for anisotropy parameters identification. The work is focused on the yield criterion developed by Cazacu, Plunkett and Barlat, 2006 [ 1], which accounts for both tension-compression asymmetry and orthotropic plastic behavior. The anisotropy parameters for a 2090-T3 aluminum alloy are identified accounting, or not, for the tension-compression asymmetry. The numerical simulation of a cup drawing is performed for this material, highlighting the importance of considering tension-compression asymmetry in the prediction of the earing profile, for materials with cubic structure, even if this phenomenon is relatively small.- The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) under projects with reference PTDC/EMS-TEC/0702/2014 and PTDC/EMS-TEC/6400/2014. The first author is also grateful to the FCT for the PhD grant SFRH/BD/98545/2013.info:eu-repo/semantics/publishedVersio
Plasticity size effects in tension and compression of single crystals
The effect of size and loading conditions on the tension and compression stress–strain response of micron-sized planar crystals is investigated using discrete dislocation plasticity. The crystals are taken to have a single active slip system and both small-strain and finite-strain analyses are carried out. When rotation of the tensile axis is constrained, the build-up of geometrically necessary dislocations results in a weak size dependence but a strong Bauschinger effect. On the other hand, when rotation of the tensile axis is unconstrained, there is a strong size dependence, with the flow strength increasing with decreasing specimen size, and a negligible Bauschinger effect. Below a certain specimen size, the flow strength of the crystals is set by the nucleation strength of the initially present Frank–Read sources. The main features of the size dependence are the same for the small-strain and finite-strain analyses. However, the predicted hardening rates differ and the finite-strain analyses give rise to some tension–compression asymmetry.
Gradient damage modeling of brittle fracture in an explicit dynamics context
International audienceIn this contribution we propose a dynamic gradient damage model as a phase-field approach for studying brutal fracture phenomena in quasi-brittle materials under impact-type loading conditions. Several existing approaches to account for the tension-compression asymmetry of fracture behavior of materials are reviewed. A better understanding of these models is provided through a uniaxial traction experiment. We then give an efficient numerical implementation of the model in an explicit dynamics context. Simulations results obtained with parallel computing are discussed both from a computational and physical point of view. Different damage constitutive laws and tension-compression asymmetry formulations are compared with respect to their aptitude to approximate brittle fracture
A simplified orthotropic formulation of the viscoplasticity theory based on overstress
An orthotropic, small strain viscoplasticity theory based on overstress is presented. In each preferred direction the stress is composed of time (rate) independent (or plastic) and viscous (or rate dependent) contributions. Tension-compression asymmetry can depend on direction and is included in the model. Upon a proper choice of a material constant one preferred direction can exhibit linear elastic response while the other two deform in a viscoplastic manner
Moisture-dependent orthotropic tension-compression asymmetry of wood
The influence of moisture content (MC) on the tension-compression (Te-Co) asymmetry of beech wood has been examined. The elastic and strength parameters, including Te and Co Young's moduli, Poisson's ratios, and ultimate and yield stress values, were determined and compared in terms of different MCs for all orthotropic directions. The results reveal a distinctive Te-Co strength asymmetry with a moisture dependency that is visualized clearly by the Te to Co yield stress ratio. The Te-Co asymmetry is further shown by the inequality of the elastic properties, known as the "bimodular behavior”. The latter is proven for the Young's moduli values in the radial and tangential directions and for individual Poisson's ratios. Although the bimodularity of the Young's moduli is significant at low MC levels, there is no evidence of moisture dependency on the Te-Co asymmetry of the Poisson's ratio
The determination and evaluation of Nitinol constitutive models for finite element analysis
Superelastic Ni-Ti (Nitinol) is a member of the shape memory alloy (SMA) family of metals. The physical properties of Nitinol are highly dependant on a number of factors, including manufacturing method, subsequent processing, operating temperature, and strain rate. These factors complicate the prescription of material constitutive models, leading to complexities in the computational analysis of Nitinol components. The current work explores the limitations in the Nitinol material model available in existing commercial finite element (FE) software using a series of specially design experimental tests and representative FE models
Texture Evolution of AZ31 Magnesium Alloy Sheet at High Strain Rates
In the current contribution the mechanical behaviour at high strain rates of AZ31 magnesium alloy sheet is studied. Uniaxial deformation properties were studied by means of tensile split Hopkinson pressure bar (SHPB) at different temperatures. The influence of the strain rate and temperature on the deformation mechanisms was investigated by means of electron backscatter diffraction (EBSD) and neutron diffraction. It is shown that twinning plays an important role on high strain rate deformation of this alloy, even at elevated temperatures. Significant evidence of prismatic slip as a deformation mechanism is observed, also at warm temperatures, leading to the alignment of directions with the tensile axis and to a spread of the intensities of the basal pole figure towards the in-plane direction perpendicular to the tensile axis. The rate of decrease of the CRSS of non-basal systems is observed to be slower than at quasi-static rates. Secondary twinning and pyramidal slip were also outlined for some conditions. At warm temperatures, in contrast to quasi-static range, a generalized dynamic recrystallization is not observed. Moreover, the activation of rotational recrystallization mechanisms is reporte
Left-right loading dependence of shock response of (111)//(112) Cu bicrystals: Deformation and spallation
We investigate with molecular dynamics the dynamic response of Cu bicrystals with a special asymmetric grain boundary (GB), (111)//(112)〈110〉, and its dependence on the loading directions. Shock loading is applied along the GB normal either from the left or right to the GB. Due to the structure asymmetry, the bicrystals demonstrate overall strong left-right loading dependence of its shock response, including compression wave features, compression and tensile plasticity, damage characteristics (e.g., spall strength), effective wave speeds and structure changes, except that spallation remains dominated by the GB damage regardless of the loading directions. The presence or absence of transient microtwinning also depends on the loading directions
- …
