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Abstract

The effect of size and loading conditions on the tension and compression stress–strain

response of micron-sized planar crystals is investigated using discrete dislocation plasticity.

The crystals are taken to have a single active slip system and both small-strain and finite-strain

analyses are carried out. When rotation of the tensile axis is constrained, the build-up of

geometrically necessary dislocations results in a weak size dependence but a strong

Bauschinger effect. On the other hand, when rotation of the tensile axis is unconstrained,

there is a strong size dependence, with the flow strength increasing with decreasing specimen

size, and a negligible Bauschinger effect. Below a certain specimen size, the flow strength of the

crystals is set by the nucleation strength of the initially present Frank–Read sources. The main

features of the size dependence are the same for the small-strain and finite-strain analyses.

However, the predicted hardening rates differ and the finite-strain analyses give rise to some

tension–compression asymmetry.
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1. Introduction

There is a considerable body of experimental evidence that plastic deformation in
crystalline solids is size dependent at length scales of the order of tens of microns and
smaller, (e.g. Ebeling and Ashby, 1966; De Guzman et al., 1993; Fleck et al., 1994;
Ma and Clarke, 1995). One well-appreciated source of this size dependence is
associated with plastic strain gradients and geometrically necessary dislocations. Size
effects can arise at the micron scale even when the macroscopically applied
deformation is uniform. Typically, this occurs when dislocation motion is
constrained, as in a thin film on a substrate or due to grain boundaries or internal
interfaces. Although an overall homogeneous deformation is possible, the constraint
on dislocation motion induces a nonuniform deformation state. Often, but not
always, this manifests itself in a hard boundary layer. In addition, self-organized
dislocation structures of the type observed by Hughes and Hansen (1993) can
develop and give rise to a size effect.
On the other hand, when plastic deformation is unconstrained and when the

loading is compatible with an overall homogeneous deformation state, a size
independent response is expected even at the micron scale. Therefore, it is somewhat
surprising that a strong size effect is seen in the single crystal compression tests of
Uchic et al. (2004), Greer et al. (2005) and Dimiduk et al. (2005). In these
experiments, cylinders, with diameters from 0:5 to 40mm and height to diameter
ratios in the range 2:1 to 4:1, were machined from a bulk single crystal using a
focused ion beam microscope (FIB) and subjected to uniaxial compression using a
nanoindenter with a flat tip. While the Ni and Ni3Al intermetallic crystals of Uchic
et al. (2004) were oriented for single slip, Greer et al. (2005) employed gold single
crystals mainly oriented in a symmetric double slip configuration. In these
experiments, the flow strength of the smallest specimens was about an order of
magnitude greater than that of the larger specimens but still substantially below the
theoretical strength that would be expected to prevail for defect free whiskers. Size
effects at a similar size scale are also seen in polycrystalline thin films, even when free
standing, (e.g. Legros et al., 2000; Zupan et al., 2001; Haque and Saif, 2004; Xiang
et al., 2004). Unlike in the experiments of Uchic et al. (2004), Greer et al. (2005) and
Dimiduk et al. (2005), grain size effects are expected to play a significant role in these
thin film experiments.
In order to shed further light on these size effects, we carry out analyses of planar

single crystals subject to both tension and compression. Attention is confined to
single slip, and plastic flow arises from the collective motion of discrete edge
dislocations. They are represented as line singularities in an elastic solid, with the
long-range interactions between dislocations and with free surfaces being directly
accounted for. Drag during dislocation motion, interactions with obstacles, and
dislocation nucleation and annihilation are incorporated through a set of
constitutive rules. Two sets of boundary conditions are considered. In one case,
the tensile axis is free to rotate while in the other case the rotation of the tensile axis
is constrained. Because of the possible significant effect of lattice rotations, both
small-strain and finite-strain calculations are carried out. For both sets of boundary
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conditions, crystal sizes ranging from 0:25 to 8mm are considered. Results are
presented for the effect of size and loading conditions—constrained versus
unconstrained tensile axis rotation and tension versus compression—on the
stress–strain response.
2. Small-strain discrete dislocation formulation

The crystals are taken to be elastically isotropic with Young’s modulus E and
Poisson’s ratio n. Plane strain conditions are assumed with the x12x2-plane, the
plane of deformation and geometry changes neglected. The crystals have one slip
system at an angle f with the positive x1 axis. The geometry and boundary
conditions employed are described in Section 2.1.
Plastic deformation, when it occurs, is described by the nucleation and glide of

discrete edge dislocations, represented as line singularities in an elastic medium, with
Burgers vector b. Once dislocations nucleate, field quantities are computed using
superposition. The singular ð�Þ field associated with the N dislocations is calculated
analytically from the isotropic linear elastic infinite medium fields of the dislocations.
The complete solution is obtained by adding an image ð^Þ field that ensures that the
boundary conditions are satisfied. Thus, the displacements, strains and stresses are
expressed as

ui ¼ ûi þ ~ui; �ij ¼ �̂ij þ ~�ij ; sij ¼ ŝij þ ~sij , (1a)

respectively, where the ð�Þ field is the sum of the fields of the individual dislocations
in their current positions, i.e.

~ui ¼
XN

I¼1

~uðIÞ
i ; ~sij ¼

XN

I¼1

~sðIÞij ; ~�ij ¼
XN

I¼1

~�ðIÞij . (1b)

The image ð
^
Þ field is obtained by solving a linear elastic boundary value problem

with boundary conditions that change as the dislocation structure evolves (Van der
Giessen and Needleman, 1995).
At the beginning of a calculation the crystal is stress- and dislocation-free. The

long range interactions of the dislocations are accounted for through their elastic
fields while constitutive rules are prescribed for short range interactions. New
dislocation pairs are generated by simulating Frank–Read sources. In two
dimensions, this is mimicked by discrete point sources randomly distributed on
discrete slip planes which generate a dislocation dipole with their Burgers vectors
aligned with the slip plane direction. This occurs when the magnitude of the
Peach–Koehler force f ðIÞ on source I exceeds a critical value tnucb during a time
period tnuc. The sign of the dipole is determined by the sign of the resolved shear
stress along the slip plane while the distance between the two dislocations at
nucleation, Lnuc, is taken such that the attractive stress field that the dislocations
exert on each other is equilibrated by a shear stress of magnitude tnuc. Annihilation
of two opposite signed dislocations on a slip plane occurs when they are within a
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material-dependent critical annihilation distance Le. The magnitude of the glide

velocity V
ðIÞ
gln along the slip direction of dislocation I is taken to be linearly related to

the Peach–Koehler force f ðIÞ through the drag relation

V
ðIÞ
gln ¼

1

B
f ðIÞ, (2)

where B is the drag coefficient. Obstacles to dislocation motion are modeled as
points associated with a slip plane. Dislocations on the obstacle slip plane get pinned
as they try to pass through that point. Obstacles release pinned dislocations when the
Peach–Koehler force on the obstacle exceeds tobsb.
2.1. Boundary conditions

The undeformed specimen is of dimension 2L � W with the tensile axis aligned
with the x1 direction, see Fig. 1. Tension is imposed by prescribing

u1 ¼ U ; T2 ¼ 0 on x1 ¼ 2L, (3a)

and

u1 ¼ �U ; T2 ¼ 0 on x1 ¼ 0, (3b)

where Ti ¼ sijnj is the traction on the boundary with outward normal nj . The lateral
edges, on x2 ¼ 	W=2, are traction free, i.e.

T1 ¼ T2 ¼ 0. (4)
+

_

_

+
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Fig. 1. Sketch of the single crystal specimen analyzed and the sign convention employed for the edge

dislocations. Tensile axis rotation (a) unconstrained and (b) constrained boundary conditions.
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A time step of Dt ¼ 0:5 ns is needed to resolve the dislocation dynamics so a rather
high loading rate _U=L ¼ 2000 s�1 is used to obtain a strain of 0.01 in 10,000 time
steps. With these common set of boundary conditions we explore the effect of the
constraint imposed by the tensile grips by considering the following two additional
constraints:
(i)
 Unconstrained rotation of the tensile axis: u2 ¼ 0 is imposed on one material point
at ð2L � x�; 0Þ, where x� ¼ 0:1L. This prevents rigid body translation in the x2

direction but does not restrict the rotation of the tensile axis of the specimen.
Even though the rotation of the tensile axis of the specimen is unconstrained, the
displacement boundary conditions, Eq. (3), prevent the rotation of the ends of
the specimen. This condition is representative of the constraints in the
compression tests of Uchic et al. (2004) and Greer et al. (2005).
(2)
 Constrained rotation of the tensile axis: u2 ¼ 0 is imposed on two material points:
at ð2L � x�; 0Þ as above and at ðx�; 0Þ. This simulates the constraint imposed by
the grips which prevents the rotation of the line spanning ðx�; 0Þ to ð2L � x�; 0Þ,
referred to here as the tensile axis. This is representative of the constraints in the
micro-sample tensile tests of Legros et al. (2000) and Haque and Saif (2004).
The applied stress s is computed as

s ¼ �
1

W

Z W=2

�W=2
T1ð0;x2Þdx2, (5)

to give the stress versus strain U=L response of the specimens.

2.2. Reference properties

In all calculations here, the specimen aspect ratio was fixed at L=W ¼ 1:5 to match
the aspect ratio in the experiments of Uchic et al. (2004) and the specimen sizes
varied from W ¼ 0:25 mm to W ¼ 8:0mm. The crystals are taken to be elastically
isotropic with Young’s modulus E ¼ 70GPa and Poisson’s ratio n ¼ 0:33 and have
slip planes at an angle f ¼ 45
 with the positive x1 axis. The slip planes are spaced
100b apart, where b ¼ 0:25 nm is the magnitude of the Burger’s vector of the edge
dislocations in the crystals. The slip planes are distributed over two-thirds of the
specimen length such that none intersect the edges where displacements are
prescribed (Fig. 1) in order to avoid numerical complications that would occur if
dislocations were to attempt to exit the material through these edges. A reference
material is considered which has Frank–Read sources randomly distributed on these
slip planes with a density rsrc ¼ 56mm�2. Each source is randomly assigned a
nucleation strength, tnuc, from a Gaussian distribution with average t̄nuc ¼ 50MPa
and standard deviation Dtnuc ¼ 1:0MPa. The nucleation time for the sources tnuc is
taken to be 10 ns. The drag coefficient for dislocation glide B ¼ 10�4 Pa s, which is
representative of Al (Kubin et al., 1992). Obstacles of strength tobs ¼ 150MPa are
randomly distributed with a density robs ¼ 56mm�2 while the material dependent
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annihilation distance Le ¼ 6b. The sensitivity of the results to the values of some of
these parameters is explored.

2.3. Details of the finite element mesh

Since the ð�Þ fields are given analytically, the finite element mesh needs to resolve
the ð^Þ fields, not the total fields. Thus, the element size is taken so as to resolve the
ð
^
Þ field gradients. Typically, for the uniaxial tension problem under consideration,

wavelengths associated with the ð^Þ fields scale with the specimen size and thus in all
the small-strain calculations, a uniform finite element grid was employed comprising
of 80� 40 bilinear quadrilaterals. This corresponds to a maximum element size of
0:0094 and 0:3mm for the W ¼ 0:25 and 8:0mm crystals, respectively. Mesh
sensitivity studies were carried out on the W ¼ 2:0mm crystals, and revealed that
decreasing the mesh size by a factor of two had little effect on the numerical results
presented subsequently.
3. Small-strain numerical results

For both the calculations with rotation of the tensile axis constrained and
unconstrained, the small-strain tensile and compressive responses of the crystals are
identical. Thus, while the results discussed subsequently were calculated for tensile
loading, they hold equally for compressive loading. Unless otherwise specified, all
calculations pertain to the reference properties given in Section 2.2.

3.1. Tensile axis rotation unconstrained

The tensile stress, s, versus strain, U=L, responses of three specimen sizes of the
reference crystals are plotted in Fig. 2a. In all calculations in Fig. 2a, the first
dislocation activity occurs at s � 95MPa. Since the Schmid factor for the slip system
is ðsin 2fÞ=2 ¼ 0:5, this value is consistent with the mean value of the source strength
distribution being t̄nuc ¼ 50MPa. Subsequently, for the W ¼ 1:0 and 4:0mm
specimens, there is a sharp drop in the stress followed by essentially an ideally
plastic response. On the other hand, there is nearly no stress drop in the W ¼

0:25mm specimen with large periodic fluctuations in the applied stress about a fixed
mean value of the applied stress. The corresponding evolution of the dislocation
density rdis (number of dislocations per unit area in a central 2L=3� W region) is
shown in Fig. 2b: rdis increases with increasing U=L before leveling off at strain
levels at which the applied stress remains approximately constant. While the curves
of the evolution of rdis with U=L are relatively smooth for the W ¼ 1:0 and 4:0mm
specimens, periodic fluctuations in rdis are seen for the W ¼ 0:25mm specimen.
These periodic fluctuations are associated with the nucleation and exit of
dislocations from the x2 ¼ 	W=2 traction free boundaries and also correspond
to the fluctuations in the s versus U=L response of the W ¼ 0:25mm specimen in
Fig. 2a. It is worth noting that in this specimen, the rate of dislocation nucleation is
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Fig. 2. Small-strain results for the tensile response (rotation of the tensile axis unconstrained) for three

specimen sizes. (a) Nominal stress versus nominal tensile strain and (b) evolution of the dislocation density

with nominal tensile strain.
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approximately equal to the rate at which dislocations exit the specimen and thus at
no stage are there more than three dislocations present in the W ¼ 0:25mm
specimen.
The results in Fig. 2 show that both the flow strength and dislocation density are

strongly dependent on the specimen size W. In order to quantify this size
dependence, the flow strength sf (defined as the average stress between
0:04pU=Lp0:05) is plotted in Fig. 3a as a function of the specimen size W. The
corresponding variation of the dislocation density rf , also averaged over
0:04pU=Lp0:05, with specimen size W is included in Fig. 3b. The results indicate
that the flow strength sf increases with decreasing W before leveling off at W �

0:375mm while the dislocation density rf increases with increasing W and starts to
plateau at W � 4:0mm. In an attempt to quantify the statistical variations in these
results, calculations for each specimen size were repeated with two additional spatial
distributions of the sources and obstacles (all with the same overall source and
obstacle densities rnuc ¼ robs ¼ 56mm�2). The predicted values of sf and rf from
these calculations are plotted in Fig. 3 and labeled realizations 1 to 3. For the large
specimen sizes (W ¼ 4:0 and 8:0mm), sf values are nearly identical for the three
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Fig. 3. (a) Flow strength sf and (b) average dislocation density rf as a function of the specimen size W.

Small-strain results (rotation of the tensile axis unconstrained) for three realizations of the reference case.
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realizations as there about approximately 104 dislocations in these specimens. On the
other hand, there is about a 10% variation in sf for the Wo0:4mm specimens. In
these specimens, there are typically 2–10 dislocations present at any stage of the
deformation. Thus, for a sufficiently small specimen, sf is mainly governed by the
nucleation stress tnuc and the variation in sf in the different realizations is a result of
the Gaussian distribution in t̄nuc. Variations in the values of sf are greatest for the
intermediate size specimens with sf showing a 25% variation between the three
realizations for the W ¼ 0:75mm specimen. The strength of these specimens is
governed by the structures formed by a relatively small number of dislocations and
thus is sensitive to statistical variations.
A power-law relation of the form

sf ¼ a
W

W 0

� ��n

, (6)

where W 0 ¼ 1mm is a reference size, fits the data in Fig. 3a well over the range
0:75mmpWp4:0mm with the choices a ¼ 67MPa and n ¼ 0:49. Fig. 3a indicates
that while the flow strength scales approximately as sf / W�0:5 for intermediate



ARTICLE IN PRESS

V.S. Deshpande et al. / J. Mech. Phys. Solids 53 (2005) 2661–2691 2669
sizes, there exist lower and upper plateaus of the flow strength with the large
specimens (W ¼ 8:0mm) having a flow strength higher than that given by Eq. (6)
while the small specimens ðWo0:4 mmÞ have a flow strength less than that estimated
from Eq. (6) (since the flow strength of the small specimens is governed by the
nucleation stress of the sources, sf � 2t̄nuc= sin 2f for Wo0:4mm). We also fit a
power-law relation of the form

rf ¼ b
W

W 0

� �m

, (7)

to the dislocation density data in Fig. 3b for 0:75mmpWp4:0mm, with b ¼ 51mm�2

and m ¼ 0:61. The fit reveals that rf has begun to plateau by W ¼ 4:0mm with
the value for W ¼ 8:0 mm being lower than that expected from an extrapolation
of Eq. (7).
Distributions of the stress s11 in the W ¼ 0:5; 2:0 and 4:0mm specimens at U=L ¼

0:05 are shown in Figs. 4a–c, respectively. The predicted dislocation structures at
U=L ¼ 0:05 are also included in Fig. 4. The stress distribution is nearly uniform in
the W ¼ 0:25mm specimen with the stress concentrations associated with the
individual dislocations clearly visible. This confirms that the flow strength is
Fig. 4. Small-strain results (rotation of the tensile axis unconstrained) for the distribution of s11 and the

dislocation structure in the (a) W ¼ 0:5mm, (b) W ¼ 2:0mm and (c) W ¼ 4:0mm specimens at an applied

strain U=L ¼ 0:05. The black ‘‘þ’’ symbols denote dislocations with Burgers vector þb and the white ‘‘�’’

symbols denote dislocations with Burgers vector �b (see Fig. 1 for the sign convention).
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governed by the strength t̄nuc of the Frank–Read sources. The stress levels are lower
in the W ¼ 1:0mm specimen with dislocations concentrated in two distinct slip
bands. Furthermore, a dislocation-free boundary layer � 0:5 mm wide forms near the
traction free x2 ¼ 	W=2 surfaces. A similar boundary layer forms in the W ¼

4:0mm specimen but occupies a much smaller area fraction of the 4:0mm specimen
resulting in a more homogeneous stress distribution.
We proceed to investigate the size dependence of the energy stored in the

dislocation structures in these single crystals. The elastic energy (per unit thickness)
stored in a specimen of area A is given by

F ¼
1

2

Z
A

sij�ij dA, (8)

which includes contributions from the applied loads and the energy associated with
the dislocation structure. In calculating F, a region of radius 4b is excluded around
each dislocation core. Numerical checks showed that decreasing the core radius to 2b

had a negligible effect on F, although the order of integration required to calculate F
accurately then had to be increased.
The tractions acting on the external surface of the specimen in its current state are

given by T
ðtÞ
i ¼ T̂

ðtÞ

i þ ~T
ðtÞ

i and the stored energy Fe associated with the applied loads
is identified with the stored energy in a dislocation-free specimen having these
tractions applied on its external surface. The stress and strain fields in this
dislocation-free specimen are denoted by �sij and ��ij , respectively. These fields are
determined by solving the linear elastic boundary value problem (using the finite
element method) with tractions T

ðtÞ
i specified on the external surfaces of the crystal.

The energy Fe at time t is then given by

Fe ¼
1

2

Z
A

�sij ��ij dA. (9a)

Since the applied tractions T
ðtÞ
i need not result in a uniform stress field in the

specimen, Fe is not necessarily equal to the energy

W e ¼
s2ð1� n2Þ

2E
A, (9b)

associated with a uniform stress s. The corresponding energy Fd stored in the
dislocation structure is then taken to be

Fd ¼ F� Fe. (9c)

The total work P done in straining the specimen to U=L is

P ¼ A

Z U=L

0

sdðU=LÞ, (10)

with the plastic dissipation equal to P� F.
The normalized energies Fd=P and F=P at U=L ¼ 0:05 are plotted in Figs. 5a and

b, respectively as a function of the specimen size W (for both the calculations with
rotation of the tensile axis unconstrained and constrained). With rotation of the
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Fig. 5. Small-strain results for (a) the energy Fd stored in the dislocation structure and (b) total elastic

energy F at an applied strain U=L ¼ 0:05. The energies Fd and F are normalized by the total work doneP
up to U=L ¼ 0:05.
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tensile axis unconstrained and for Wp0:75mm, negligible energy is stored in the
dislocation structure with the elastic energy associated with the applied loads being
the major contribution to F. On the other hand, for the larger specimens
ðW41:0mmÞ, most of the stored energy is associated with the dislocation structure.
However, in all cases with unconstrained rotation of the tensile axis, the stored
energy is only about 2.5% of the total work done, the remaining energy being
dissipated in plastic work. Since dislocation structures associated with geometrically
necessary dislocations (GNDs) would give rise to a long range stress field which, in
turn, would be accompanied by increased values of the stored elastic energy, the low
values of Fd when the rotation of the tensile axis is unconstrained, are consistent
with this size dependence not being related to GNDs.

3.1.1. Effects of dislocation sources and obstacles

The tensile stress–strain responses for three obstacle-free specimens are plotted in
Fig. 6a and the evolution of the dislocation density rdis with strain for the W ¼ 1:0
and 8:0mm obstacle-free specimens is plotted in Fig. 6b. The specimens in Fig. 6 are
identical to the reference specimens considered in Section 3.1 except that all obstacles
have been removed. The stress–strain response of the W ¼ 0:25mm obstacle-free
specimen is very similar to that of the reference material. However, the W ¼ 1:0 and
8:0mm obstacle-free specimens have a much higher flow strength than the
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corresponding reference specimens. The very large oscillations in the applied stress
and rdis in the early stages of the response of the W ¼ 8:0mm specimen are a result of
sudden bursts of dislocation nucleation. Since there are no obstacles to dislocation
motion, the glide of these dislocations results in a drop in the applied stress. When
these dislocations exit the specimen, the stress has to increase to approximately
2t̄nuc= sin 2f to nucleate new dislocations for plastic deformation to continue.
However, in this large specimen, the rate of dislocation nucleation is greater than the
rate at which dislocations exit the specimen and thus eventually a steady-state is
reached where a few dislocations remain within the specimen: the stress
concentration associated with these dislocations enables continued nucleation of
new dislocations at an applied stress below 2t̄nuc= sin 2f. On the other hand,
dislocations continually nucleate and exit the W ¼ 1:0mm specimen with nearly no
dislocation storage, as evidenced by the large oscillations in the stress–strain and rdis
versus U=L curves in Fig. 6. Thus,a stress approximately equal to 2t̄nuc= sin 2f needs
to be applied to ensure continued plastic deformation. When no obstacles are present
in the specimen, rf � 2 mm�2 for all specimen sizes, Fig. 6b. In contrast, rf increases
from approximately 2mm�2 to about 100mm�2 as the specimen size increases from
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Fig. 7. Small-strain results (rotation of the tensile axis unconstrained) for the variation of the flow

strength sf with specimen size W. Effect of (a) source and obstacle density and (b) mean source strength

t̄nuc and standard deviation Dtnuc of the source strengths.
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W ¼ 0:25 to 8:0 mm in the reference specimens, Fig. 3b. It is this increase in
dislocation density that results in the decrease in sf with increasing W.
The effect of obstacle density on the flow strength sf is illustrated in Fig. 7a. While

sf displays a weak dependence on specimen size W in the obstacle-free crystals,
doubling the reference obstacle density to robs ¼ 112 mm�2 has a negligible effect on
sf to within the statistical variations in the results. This indicates that a critical
obstacle density is required to inhibit dislocation motion and facilitate storage of
dislocations in the specimens. Below this critical density, the mean spacing between
obstacles, 1=

ffiffiffiffiffiffiffiffi
robs

p
, is large compared to the specimen size and dislocations exit the

specimen before being blocked by the obstacles. Above this critical density, over the
range of obstacle densities considered, the obstacle density does not significantly
affect the flow strength. The effect of source density on sf is also included in Fig. 7a.
Increasing the source density from the reference value rnuc ¼ 56 to 112mm�2 reduces
the flow strength for the WX1:0mm specimens but has a negligible effect on the flow
strength of the smaller specimens.
The effect of increasing the source and obstacle strength to t̄nuc ¼ 100MPa and

tobs ¼ 300MPa on sf is illustrated in Fig. 7b. In these calculations, the same spatial
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distribution of sources and obstacles as in the reference material was taken and the
strength of each of source and obstacle increased by a factor of two. Thus, the
corresponding standard deviation Dtnuc of source strengths also increased to 2MPa.
Increasing the source and obstacle strength by a factor of two increases the flow
strength sf by a similar amount over the whole range of specimen sizes investigated
here. The effect of increasing the standard deviation Dtnuc of the source strengths
from 1 to 10MPa, while keeping the source and obstacle densities as well as t̄nuc and
tobs fixed at the reference values, is also illustrated in Fig. 7b. The main effect of
increasing the standard deviation of nucleation strengths is to decrease the size
effect for sufficiently large W; that is, the lower plateau in sf ðW Þ occurs at a smaller
value of W.
3.2. Tensile axis rotation constrained

The stress s versus strain U=L curves of three sizes of the reference specimen
subjected to uniaxial tension with the rotation of the tensile axis constrained are
shown in Fig. 8a. As in the calculations with rotation of the tensile axis
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Fig. 8. Small-strain results for the tensile response (rotation of the tensile axis constrained) for specimens

with W ¼ 0:25, 1:0 and 4:0mm. (a) Nominal stress versus nominal tensile strain and (b) evolution of the

dislocation density with nominal tensile strain.
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unconstrained, the first dislocation activity occurs at s � 95MPa. Subsequently, the
W ¼ 0:25mm specimen exhibits ideally plastic behavior up to U=L ¼ 0:015 followed
by a linear hardening response with a hardening rate ds=dðU=LÞ � G=6, where G is
the shear modulus. On the other hand, after the first dislocation nucleation, there is a
sharp stress drop in the two larger specimens (W ¼ 1:0 and 4:0mm) and subsequently
these specimens also exhibit similar linear hardening behavior. The corresponding
evolution of the dislocation density rdis (number of dislocations per unit area in a
central 2L=3� W region) is shown in Fig. 8b. In contrast to the calculations with
rotation of the tensile axis unconstrained, rdis continues to increase approximately
linearly with increasing U=L up to the strain levels computed here. Moreover, the
rate drdis=dðU=LÞ increases with decreasing W resulting in higher dislocation
densities in the smaller specimens.
These results are summarized in Fig. 9 where the flow strength sf and

corresponding dislocation density rf (both averaged between 0:04pU=Lp0:05)
are plotted in Figs. 9a and b, respectively, along with the data from Fig. 3 where
rotation of the tensile axis is unconstrained. The power-law relation equation (6) is
seen to fit the flow strength data for the calculations with rotation of the tensile axis
constrained with a ¼ 244MPa and n ¼ 0:08. Thus, while the flow strength is much
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Fig. 9. Small-strain results for the variation of the (a) flow strength sf and (b) average dislocation density
rf with specimen size W for both the tensile axis rotation constrained and unconstrained boundary

conditions.
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higher when rotation of the tensile axis is constrained, the size dependence of the
flow strength is significantly reduced compared to when rotation of the tensile axis is
unconstrained. The dislocation densities rf are also higher in the calculations with
rotation of the tensile axis constrained, but rf increases with decreasing size: Eq. (7)
with b ¼ 302mm�2 and m ¼ �0:44 describes the dependence of rf on W.
The distribution of s11 in the W ¼ 0:5; 2:0 and 4:0mm specimens along with the

corresponding dislocation structures at U=L ¼ 0:05 are plotted in Figs. 10a–c,
respectively. In all cases, the constraint imposed by restraining the tensile axis to
remain parallel to the x1 axis results in the development of bending stresses (the
localized high stress regions seen around the points ðx�; 0Þ and ð2L � x�; 0Þ are
associated with the constraint imposed by the supports at those locations). Also,
distributions of lattice rotations (not shown here) indicate a band of concentrated
lattice rotations at � �45
 with respect to the x1 axis. Consistent with the results in
Deshpande et al. (2005) and the dislocation distributions in Fig. 10, this is a kink-like
band perpendicular to the slip direction. While the arrangement of the dislocations in
a kink-like band suggests that a large fraction of the dislocations may be viewed as
‘‘geometrically-necessary’’ in the sense of Ashby (1970), the scaling of rf with W is
not consistent with this assumption. The GND density rG is expected to scale with
W�1 while the discrete dislocation calculations suggest that rf / W�0:44. However,
Fig. 10. Small-strain results (rotation of the tensile axis constrained) for the distribution of s11 and the

dislocation structure in the (a) W ¼ 0:5mm, (b) W ¼ 2:0mm and (c) W ¼ 4:0mm specimens at an applied

strain U=L ¼ 0:05. The black ‘‘þ’’ symbols denote dislocations with Burgers vector þb and the white ‘‘�’’

symbols denote dislocations with Burgers vector �b (see Fig. 1 for the sign convention).
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with rotation of the tensile axis constrained, the specimen is subject to combined
bending and tension and thus expected to have a substantial fraction of statistically
stored dislocations in addition to GNDs. The density of statistically stored
dislocations does not scale with the specimen size W which results in the weaker
dependence of rf on W in the calculations here.
The variations of the normalized energies Fd=P and F=P at U=L ¼ 0:05 with

specimen size W are included in Figs. 5a and b, respectively, along with the
corresponding data from the calculations with rotation of the tensile axis unconstrained.
A larger fraction of the total work done is stored in the dislocation structure when
rotation of the tensile axis is constrained, with Fd=P increasing from about 5% in the
W ¼ 0:25mm specimen to about 18% when W ¼ 4:0mm. Moreover, most of the work
done is stored as elastic energy with F=P nearly independent of W and approximately
equal to 0.8. When rotation of the tensile axis is constrained, the elastic energy
associated with the applied loads is expected to be much greater than that associated
with a uniform applied tensile field. To illustrate this, the ratios Fe=W e at U=L ¼ 0:05
are plotted in Fig. 11 as a function of W for calculations both with rotation of the tensile
axis unconstrained and constrained. With rotation of the tensile axis unconstrained,
Fe � W e suggesting that the applied loading is reasonably uniform. On the other hand,
the imposed bending (Fig. 10) results in Fe=W e � 10 when rotation of the tensile axis is
constrained. This imposed bending also gives rise to the hardening response of the
specimens and the formation of the kink-like band visible in Fig. 10.

3.3. The Bauschinger effect

Since a large fraction of the total work is stored as elastic energy in the specimens
with rotation of the tensile axis constrained, we expect such specimens to exhibit a
strong Bauschinger effect (reverse plastic flow during unloading). In order to
investigate this phenomenon, the W ¼ 0:25; 1:0 and 4:0mm specimens were unloaded
from U=L ¼ 0:05 by applying a reverse strain rate _U=L ¼ �2000 s�1 until U=L ¼ 0.
The loading–unloading stress versus strain curves for calculations with the

rotation of the tensile axis unconstrained and constrained, are plotted in Figs. 12a
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and b, respectively. When rotation of the tensile axis is unconstrained, nearly no
Bauschinger effect is observed with compressive yield occurring at a stress level
approximately equal to the original tensile flow strength. This is consistent with the
low values of elastic energy stored in the dislocation structure, seen in Figs. 5 and 11.
This is also in good agreement with the experimental measurements of Dimiduk
et al. (2005) on pure Ni. On the other hand, unloading with rotation of the tensile
constrained results in reverse plastic flow with reverse yielding commencing at
s � 150MPa. Subsequently, unloading occurs with the stress decreasing approxi-
mately linearly with strain with a slope equal to that during the initial loading; that
is, ds=dðU=LÞ � G=6 during reverse plastic flow.
4. Finite-strain effects

4.1. Finite-strain formulation

The results presented in Section 3 were obtained using a small-strain framework,
i.e. neglecting changes in geometry of the specimen due to deformation. In order to
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assess the consequences of this approximation on the phenomena investigated here,
we also study the problem using the finite-strain dislocation plasticity framework of
Deshpande et al. (2003). This framework assumes that (i) lattice strains remain small
away from the dislocation cores and (ii) the elastic properties are unaffected by slip.
In contrast to the small-strain calculations, the finite-strain framework accounts for:
(i) finite deformation-induced lattice rotations and (ii) the effect of shape changes
due to slip on the momentum balance.
As in the small-strain formulation, the total displacement rate and stress fields are

given by a superposition of the analytically known ð
�
Þ fields of dislocations in an

infinite medium and the ð^Þ fields that enforce the boundary conditions. In contrast
to the small-strain analysis, the complimentary problem for the ð^Þ fields is nonlinear
and is solved iteratively using an updated Lagrangian scheme. Readers are referred
to Deshpande et al. (2003) for further details.
We summarize the plane strain short-range constitutive rules, highlighting the

differences between the small-strain and finite-strain formulations. One significant
change is that dislocations are no longer confined to a fixed slip plane due to
slip on intersecting slip systems. Hence, the basic entity is a slip system (i.e. the
orientation of the slip plane normal and the slip direction) rather than a slip plane.
Furthermore, because of finite rotations, the orientation of a nucleated dislocation
dipole (the two-dimensional analog of a nucleated loop) varies with the local
deformation state.
The magnitude of the glide velocity V

ðIÞ
gln along the current slip direction s

ðaÞ
i of

dislocation I on slip system a is again taken to be linearly related to the
Peach–Koehler force f ðIÞ through the drag relation V

ðIÞ
gln ¼ f ðIÞ=B. Here, we assume

that the drag coefficient B is constant throughout the body. We also do not account
for any change in the resistance to dislocation motion near a free surface associated
with the energy required to create new free surface when the dislocation exits.
Frank–Read sources generate a dislocation dipole with their Burgers vectors aligned
with the local slip direction s

ðaÞ
i . Note that unlike the small-strain formulation where

only opposite signed dislocations on a given slip plane can annihilate each other, in
the finite-strain context opposite signed dislocations on a given slip system
can annihilate each other. Thus, annihilation of two opposite signed dislocations
on a particular slip system occurs when they are within Le irrespective of their
current slip planes. Obstacles to dislocation motion are modeled as points associated
with a slip system rather than a slip plane. Thus, dislocations on the obstacle slip
system that pass within a specified distance, taken to be Le, get pinned to that
obstacle.
As in the small-strain calculations, in the finite-strain calculations, 80� 40

quadrilaterals were employed in the finite element discretization of all the specimens.
However, in this case, each quadrilateral was built-up of four triangular elements
with linear displacement fields. The finite-strain calculations are limited by the
distortion of the finite element mesh because deformation can be highly localized. In
order to increase the strain levels that can be attained, without substantially affecting
the accuracy of the calculations, a simple re-meshing scheme was employed as
discussed in the Appendix.
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4.2. Boundary conditions and crystal properties

In the finite-strain context, and with the tensile axis aligned with the x1 direction,
tension or compression is imposed by prescribing the displacement rates _ui and
traction rates _Ti as

_u1 ¼ _U ; _T2 ¼ 0 on x1 ¼ 2L þ U , (11a)

and

_u1 ¼ � _U ; _T2 ¼ 0 on x1 ¼ �U . (11b)

The lateral edges, those initially on x2 ¼ 	W=2, are traction free, i.e.

_T1 ¼ _T2 ¼ 0. (12)

As in the small-strain calculations, the specimens are subjected to a nominal loading
rate _jUj=L ¼ 2000 s�1. With these common set of boundary conditions, we again
explore the effect of the constraint imposed by the tensile grips by considering
rotation of the tensile axis as being constrained or unconstrained. These condi-
tions are
(i)
 Unconstrained rotation of the tensile axis: _u2 ¼ 0 is imposed on one material point
at ð2L � x�; 0Þ in the undeformed configuration, where x� ¼ 0:1L.
(ii)
 Constrained rotation of the tensile axis: _u2 ¼ 0 is imposed on two material points
at ðx�; 0Þ and ð2L � x�; 0Þ in the undeformed configuration, where x� ¼ 0:1L.
4.3. Finite-strain numerical results

The finite-strain discrete dislocation plasticity calculations indicate a tension–
compression asymmetry. Therefore the responses in tension and compression are
discussed separately in this section.

4.3.1. Tensile axis rotation unconstrained

The nominal stress, snom, versus strain, U=L, responses of three selected specimens
subjected to uniaxial tension and compression are plotted in Figs. 13a and b,
respectively. The stress, snom, is computed as

snomðtÞ ¼ �
1

W

Z
SL

T1 ds. (13)

Here, the integration is performed along the boundary SL where x1 ¼ �U . A
comparison with Fig. 2a reveals that the small- and finite-strain predictions of the
tensile responses of the W ¼ 4:0 mm specimen are reasonably similar, with both
calculations predicting an almost ideally plastic response for U=L40:02. On the
other hand, the finite-strain calculations predict a hardening tensile response for the
W ¼ 2:0 and 0:5mm specimens with dsnom=dðU=LÞ � G=80 and G=30, respectively.
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Fig. 13. Finite-strain results (rotation of the tensile axis unconstrained) for the (a) tensile and (b)

compressive responses of specimens with W ¼ 0:25; 1:0 and 4:0mm.
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The finite-strain compressive response, Fig. 13b, is almost ideally plastic for all
specimen sizes considered.
The finite-strain and small-strain predictions of the flow strength sf for the

reference specimens are plotted in Fig. 14a, as a function of the specimen size W. In
line with the small-strain calculations, sf in these finite-strain calculations is defined
as the absolute value of the average nominal stress between 0:04pjU j=Lp0:05. For
specimen sizes in the range 0:5mmpWp4:0mm, the finite-strain tension calculations
predict that sf increases with decreasing W, following a scaling law similar to the
small-strain predictions, Eq. (6). The finite-strain results for the dislocation densities
rf (number of dislocations per unit area in a central 2L=3� W region averaged
between 0:04pjU j=Lp0:05) are shown in Fig. 14b, along with the small-strain
results from Fig. 3b. Again, the finite-strain calculations predict a scaling1 similar to
the small-strain calculations.
1The W ¼ 1:0 and 2:0mm finite-strain tension calculations predict dislocation densities higher than

those in the corresponding finite-strain compression and small-strain calculations. Additional calculations

are needed to establish whether this is indicative of a trend or a result of the statistical scatter inherent in

the discrete dislocation predictions.
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To gain some insight into the differences between the finite-strain results for the
tensile and compressive responses of the W ¼ 0:5mm specimen, the distribution of
Cauchy stress s11 at jU j=L � 0:05 are plotted in Figs. 15a and b for the uniaxial
tension and compression cases, respectively. The corresponding dislocation
structures are also included in Fig. 15. As in the small-strain predictions, the
finite-strain calculations also indicate that very few dislocations are present in the
specimen at jU j=L � 0:05. However, while the stress distribution is nearly uniform in
the small-strain case, Fig. 4a, a large boundary layer with high stresses develops
along the traction free edges in finite-strain, Fig. 15a. The hardening tensile response
of the W ¼ 0:5mm specimen is due to the growth of the boundary layer
with increasing strain. A thinner boundary layer develops in the finite-strain
compression calculation, Fig. 15b, with the stress distribution more uniform.
Finite-strain results for the Cauchy stress s11 distribution and dislocation structure
in the W ¼ 4:0mm tensile specimen are shown in Fig. 15c. As in the small-strain
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Fig. 15. Finite-strain results (rotation of the tensile axis unconstrained) for the distribution of the Cauchy

stress component s11 and the dislocation structure at an applied strain jU j=L � 0:05. (a) Tension and (b)

compression of the W ¼ 0:5mm specimen and (c) uniaxial tension of the W ¼ 4:0mm specimen. The black

‘‘þ’’ symbols denote dislocations with Burgers vector þb and the white ‘‘�’’ symbols denote dislocations

with Burgers vector �b (see Fig. 1 for the sign convention).
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calculations, the stress distribution is more uniform in the W ¼ 4:0mm specimen
than in the smaller specimens, although there still is a small boundary layer.
The boundary layer occurs because the kinematic boundary conditions equation
(11) prevent rotation of the ends of the specimens, even though the tensile axis can
rotate.

4.3.2. Tensile axis rotation constrained

The finite-strain tension and compression responses when rotation of the tensile
axis is constrained are shown in Figs. 16a and b, respectively. In tension, hardening is
linear with dsnom=dðU=LÞ � G=15 for specimen sizes from W ¼ 0:5 to 4:0mm. This
hardening rate is about a factor of two smaller than that in the small-strain analyses,
Fig. 8a. However, under uniaxial compression, the finite-strain calculations predict a
linear hardening rate similar to that in the small-strain calculations.
The finite-strain predictions of the variations of the flow strength sf and

dislocation density rf with W are summarized in Figs. 17a and b, respectively, along
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with the appropriate small-strain predictions.2 In tension, with rotation of the tensile
axis constrained, the finite-strain calculations predict a scaling of sf with W similar
to the small-strain calculations, albeit with a slightly reduced flow strength. On the
other hand, in compression with rotation of the tensile axis constrained, the finite-
strain calculations predict that sf increases slightly with increasing W though there is
insufficient finite-strain data to make a conclusive statement. The finite-strain
predictions of rf are very similar to the small-strain predictions over the specimen
size range 0:5mmpWp4:0mm.
Figs. 18a and b depict the distributions of the Cauchy stress s11 and the

dislocation structures in the W ¼ 4:0mm specimen at jU j=L � 0:05 for tension and
compression, respectively. As in the small–strain calculations, the finite-strain
analysis predicts that the constraint imposed by restraining the rotation of the tensile
axis results in the formation of a kink-like band at � �45
 with respect to the x1 axis
2The W ¼ 0:5mm compression calculations were terminated at U=L � 0:03 as excessive surface

roughening meant that the simple re-meshing technique was no longer able to effectively re-mesh the

domain. Thus, the finite-strain compression data for this case is not included in Fig. 17.



ARTICLE IN PRESS

100

101

103

102

50

100

150

200
250
300

finite strain tension
finite strain compression
small strain compression/tension

finite strain tension
finite strain compression
small strain compression/tension

W (µm)

 
σf  = 244 (W/W0)

-0.08 MPa

0.5

W (µm)

ρ d
is

 (µ
m

-2
)

σ f
 (M

Pa
)

 
σf = 302 (W/W0)

-0.44 µm-2

1 2 3 4 5

0.5 1 2 3 4 5

(a)

(b)

Fig. 17. Small-strain and finite-strain results for the variation of the (a) flow strength sf and (b) average

dislocation density rf with specimen size W for the tensile axis rotation constrained boundary condition.
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(i.e. perpendicular to the original slip direction) and in the development of large
bending stresses. These large bending stresses (which are also seen in the small-strain
analyses) result in the development of lattice rotation and suggest the need for the
finite-strain framework.
5. Discussion

With the tensile axis constrained against rotation, the flow strength and
dislocation density decrease with increasing specimen size. While the size dependence
of the flow strength is weak ðsf / W�0:08Þ, the dislocation density scales with W�0:44.
The decreasing dislocation density with increasing specimen size is consistent with
the role of bending when rotation of the tensile axis is constrained, as the density of
geometrically necessary dislocations is proportional to 1=specimen size (Nye, 1953;
Ashby, 1970). The combined tension and bending in cases where the tensile axis is
constrained leads to the reduced dependence of the dislocation density on W.
On the other hand, when rotation of the tensile axis is permitted, there is a size

regime where the flow strength decreases strongly with increasing specimen size,
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Fig. 18. Finite-strain results (rotation of the tensile axis constrained) for the distribution of the Cauchy

stress component s11 and the dislocation structure in the W ¼ 4:0mm specimen at an applied strain

jU j=L � 0:05. (a) Tension and (b) compression. The black ‘‘þ’’ symbols denote dislocations with Burgers

vector þb and the white ‘‘�’’ symbols denote dislocations with Burgers vector �b (see Fig. 1 for the sign

convention).
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approximately / W�0:5, and the dislocation density at a given strain increases with
increasing specimen size. The origin of this size effect is quite different from when
rotation of the tensile axis is constrained. Because the calculations begin with the
specimen free of mobile dislocations, plastic deformation begins when the resolved
shear stress at the weakest dislocation source attains the nucleation strength for the
required nucleation time. Thus, one contribution to the size effect is that, since the
source density is taken to be independent of specimen size, larger specimens have
more dislocation sources than small specimens and are more likely to have a weak
source. But this is not the main contribution to the size dependence as the standard
deviation of the source strengths in most calculations is just 1MPa. The main
contribution is associated with the role of the dislocation obstacles in preventing
dislocations from exiting the specimen. Since the density of dislocation obstacles is
the same for all specimen sizes, the mean distance between obstacles is independent
of specimen size. Therefore, for a sufficiently small specimen, the distance a
dislocation needs to glide to exit the specimen is less than the mean distance between
obstacles and dislocations are likely to leave the specimen without encountering an
obstacle. Continued plastic deformation thus requires the stress to be maintained at
the nucleation strength. For larger specimens, dislocation glide is more likely to be
blocked by obstacles. The stress concentration associated with the elastic fields of the
dislocations enables the activation of dislocation sources when the applied stress is
less than the nucleation strength. Hence, the flow strength decreases and the
dislocation density increases with increasing specimen size. In our calculations, it is
the stress concentration associated with an increased number of internal dislocations
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that promotes plastic flow at a lower applied stress in larger specimens. Also, our
calculations suggest that the key ratios for the size dependence are that of specimen
size to obstacle spacing, and specimen size to source spacing.
Consistent with this picture, Fig. 2a shows that the initial yield strength for the

W ¼ 4:0mm specimen is nearly the same as that for the W ¼ 0:25mm specimen. It is
only after some plastic deformation and when an internal dislocation density has
developed that the lower flow strength of the larger specimen is attained. On the
other hand, the dislocation density in the obstacle-free crystals is about an order of
magnitude smaller than the corresponding reference specimens. This results in the
reduced size dependence of sf in the obstacle-free crystals (Fig. 7). Nevertheless, for
the larger specimens, some dislocations do remain in the interior of the obstacle-free
specimens simply because of the time it takes for the dislocation to traverse the slip
plane. This suggests that for a relatively obstacle-free specimen, the number of
internal dislocations may strongly depend on the imposed strain rate and the time
tnuc for the generation of a stable dislocation dipole.
Our analyses indicate that the main features of the size dependence emerge from a

small-strain analysis. However, finite deformation effects (e.g. lattice rotations and
shape changes) affect the predicted hardening rate and give rise to a tension–com-
pression asymmetry. In the finite-strain analysis with rotation of the tension
axis permitted, a boundary layer of high stress is found in the smaller specimens
(Fig. 15a) although such a boundary layer is not seen in the corresponding small-
strain analysis (Fig. 4a). However, the stress elevation in the boundary region in
Fig. 15 is much less than when the rotation of the tensile axis is constrained, Figs. 10
and 18. It is worth noting that in Figs. 10 and 18, the size of the high stress region
scales with the specimen size in contrast, for example, to thin films on substrates
(Nicola et al., 2003). For thin films, a boundary layer develops as a consequence of
impenetrability of the film–substrate interface, and has a thickness which is more or
less independent of film thickness. The scaling of the high stress region here
undoubtedly plays a role in the weak size dependence that occurs when the rotation
of the tensile axis is constrained.
The qualitative features of the size dependence that emerge from our calculations

are in good agreement with those seen in the experiments of Greer et al. (2005) for
gold (where the size dependence of flow strength in the micron range goes as a �0:5
power) and by Dimiduk et al. (2005) for nickel (where the size dependence follows a
�0:62 power law). For Ni3Al intermetallics, Dimiduk et al. (2005) obtain a size
dependence power of �0:77. The relatively high Peierls stress of intermetallics may
play a role in the increased sensitivity to size. The ratio of the small to large specimen
flow strengths in our calculations is about 3–5 whereas in the experiments a ratio of
5–10 is more typical.
Another significant difference between our calculations and the experiments of

Uchic et al. (2004), Greer et al. (2005) and Dimiduk et al. (2005) is that the
experimental measurements do not exhibit initial stress drops. The main factors that
lead to this discrepancy are: (i) the experiments are essentially stress controlled while
in the calculations a constant nominal strain rate was imposed; (ii) the strengths of
all the dislocation sources were taken to be approximately equal; and (iii) our
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analyses presume an initially stress-free specimen, whereas in a real specimen there is
an initial dislocation structure. The associated initial stress field can have a
significant effect on the stress–strain response at small strains. In our calculations,
the applied stress must attain the nucleation stress of the weakest source for plastic
flow to occur. Therefore, for the larger specimens there is a stress drop from the
stress at initial yield to the stress for sustained plastic flow which can be reduced (or
eliminated) by incorporating an initial dislocation distribution. Indeed, as seen in
Fig. 12a, the stress drop is eliminated on reverse loading with the size dependence
remaining unaffected. The stress drop is also reduced when there is a distribution of
source strengths; this is seen in the stress–strain curves (not exhibited here) for the
cases with Dtnuc ¼ 10MPa in Fig. 7b.
Although the main features of size dependence agree with the cited experimental

findings, our model contains a number of idealizations that may be responsible for
the differences between our predictions and what is seen in the experiments. Our
analyses are carried out within a two-dimensional plane strain framework. This
significantly limits the sort of dislocation interactions that can occur. For example,
the number of dislocation sources and obstacles are fixed whereas in a real specimen
they are expected to evolve with deformation. The computational time required for a
parameter study involving full three-dimensional analyses to the strains needed is
not, at least for us, feasible at present. However, Benzerga et al. (2004) have recently
developed dislocation constitutive rules to incorporate the physics of three-
dimensional dislocation interactions into a two-dimensional computation.
In the current calculations, we have only permitted dislocation activity on a single

slip system. When the crystals are oriented for symmetric double slip as in Greer et
al. (2005), the results with rotation of the tensile axis constrained may differ
significantly from those reported here. Even when dislocation activity on secondary
systems contributes little to the overall plastic deformation as in Uchic et al. (2004),
this secondary slip can influence the dislocation evolution on the primary system.
The effect of multiple slip on size dependence in tension and compression can be
investigated within the framework employed here.
The development of size-dependent phenomenological continuum plasticity

constitutive relations for crystalline solids has focused on representing the role of
plastic strain gradients and geometrically necessary dislocations. The results here
show that discrete dislocation plasticity can represent size effects associated with the
collective behavior of dislocations that, at least in certain circumstances, can give rise
to size effects that are as strong as or stronger than those associated with
geometrically necessary dislocations. Whether or not phenomenological plasticity
relations can be developed that incorporate this source of size dependence remains to
be seen.
6. Concluding remarks

We have carried out small- and finite-strain discrete dislocation analyses of the
compressive and tensile responses of single crystals oriented for single slip under
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plane strain conditions. The effect of the constraint imposed by the specimen grips is
investigated by either constraining or permitting the rotation of the tensile axis of the
crystals. Plastic flow arises from the collective motion of discrete dislocations that
nucleate from initially present internal Frank–Read sources.
�
 When rotation of the tensile axis is constrained, bending is induced in the
specimen in both the small- and finite-strain analyses with the build-up of
geometrically necessary dislocations resulting in a linear hardening response and a
weak size dependence of the flow strength sf but a strong Bauschinger effect. The
dislocation density at a fixed applied strain decreases with increasing specimen
size.
�
 When rotation of the tensile axis is unconstrained, a strong size effect is obtained
with sf increasing with decreasing specimen size. However, there is a negligible
Bauschinger effect and the dislocation density at a fixed applied strain increases
with increasing specimen size.
�
 The main features of the size dependence are revealed by a small-strain analysis,
although the finite-strain analyses suggest some tension–compression asymmetry.
�
 The mechanism for the increasing strength with decreasing size when rotation of
the tensile axis is unconstrained is largely consistent with the ‘‘dislocation
starvation’’ picture of Greer et al. (2005).
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Appendix: Details of the re-meshing scheme employed in the finite-strain calculations

A simple re-meshing scheme was employed in the finite-strain analysis so as to
enable the calculations to proceed to larger deformations. In this re-meshing scheme,
the number and type of elements along with the boundary nodes in the new and old
mesh are kept fixed. Thus, the connectivity table of the elements remains unchanged
and the re-meshing mainly comprises the transfer of the field quantities, such as
stress, from the old mesh to the new mesh.
As in the original mesh, the new mesh is comprised of quadrilaterals built up of

four triangular elements with linear displacement fields. The quadrilaterals are
generated as follows. Let there be n and m nodes along the edges x2 ¼ W=2 and
x1 ¼ 0 in the original mesh. The nodes along all the edges remain the same in the new
and old mesh. Straight lines are drawn connecting each of the n nodes on the lateral
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edge, initially on x2 ¼ W=2 to the corresponding node on the edge initially on
x2 ¼ �W=2. Nodes of the quadrilateral elements in the new mesh are then generated
by dividing each of these straight lines into m � 1 equal segments.
It now remains to specify the values of the field quantities such as stress in the new

mesh. Recall that we employ a mesh comprising quadrilaterals built up of four
triangular elements with linear displacement fields. Thus, quantities such as stress
and deformation gradient Fij are constant within each triangular element. In order to
estimate the stress sij of a particular triangular element in the new mesh, we
determine the position of the centroid of that triangular element. This point is then
located in the old mesh and the new element assigned the stress value of the old
triangular element in which this centroidal point lies. Re-meshing is carried out when

jDF̄ jXðDF̄maxÞ, (A.1a)

in any element. Here F̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
F ijF ij

p
where the deformation gradient,

Fij ¼ dij þ

Z t

0

q _ui

qxm

F�1
mj dt. (A.1b)

Spatial differentiation with respect to xj is carried out using the finite element shape
functions in the current configuration and thereby including the slip contribution.
The D in (A.1a) denotes the change since the last re-meshing. The limiting value
ðDF̄ Þmax was taken to be 0.6 in most of the calculations.
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