27 research outputs found

    Towards Intrinsic Molecular Communication Using Isotopic Isomerism

    Get PDF
    In this paper we introduce a new approach for molecular communication (MC). The proposed method uses isotopomers as symbols in a communication scenario, and we name this approach isotopic molecular communication (IMC). We propose a modulation scheme based on isotopic isomerism, where symbols are encoded via isotopes in molecules. This can be advantageous in applications where the communication has to be independent from chemical molecular concentration. Application scenarios include nano communications with isotopes in a macroscopic environment, i.e. encoding freshwater flow of rivers or drinking water utilities, or medical applications where blood carries isotopomers used for communication in a human or animal body. We simulate the capacity of communication in the sense of symbols per second and maximum symbol rate for different applications. We provide estimations for the symbol rate per distance and we demonstrate the feasibility to identify isotopes reliably. In summary, this isotopic molecular communication is a new paradigm for data transfer independent from molecular concentrations and chemical reactions, and can provide higher throughput than ordinary molecular communications

    Molecular Versus Electromagnetic Wave Propagation Loss in Macro-Scale Environments

    Get PDF
    Molecular communications (MC) has been studied as a bio-inspired information carrier for micro-scale and nano-scale environments. On the macro-scale, it can also be considered as an alternative to electromagnetic (EM) wave based systems, especially in environments where there is significant attenuation to EM wave power. This paper goes beyond the unbounded free space propagation to examine three macro-scale environments: the pipe, the knife edge, and the mesh channel. Approximate analytical expressions shown in this paper demonstrate that MC has an advantage over EM wave communications when: 1) the EM frequency is below the cut-off frequency for the pipe channel, 2) the EM wavelength is considerably larger than the mesh period, and 3) when the receiver is in the high diffraction loss region of an obstacle

    The effect of two receivers on broadcast molecular communication systems

    Get PDF
    Molecular communication is a paradigm that utilizes molecules to exchange information between nano-machines. When considering such systems where multiple receivers are present, prior work has assumed for simplicity that they do not interfere with each other. This paper aims to address this issue and shows to what extent an interfering receiver, RI, will have an impact on the target receiver, RT, with respect to Bit Error Rate (BER) and capacity. Furthermore, approximations of the Binomial distribution are applied to reduce the complexity of calculations. Results show the sensitivity in communication performance due to the relative location of the interfering receiver. Critically, placing RI between the transmitter TX and RT causes a significant increase in BER or decrease in capacit

    Diffusive molecular communication in a biological spherical environment with partially absorbing boundary

    Get PDF
    Diffusive molecular communication (DMC) is envisioned as a promising approach to help realize healthcare applications within bounded biological environments. In this paper, a DMC system within a biological spherical environment (BSE) is considered, inspired by bounded biological sphere-like structures throughout the body. As a biological environment, it is assumed that the inner surface of the sphere’s boundary is fully covered by biological receptors that may irreversibly react with hitting molecules. Moreover, information molecules diffusing in the sphere may undergo a degradation reaction and be transformed to another molecule type. Concentration Green’s function (CGF) of diffusion inside this environment is analytically obtained in terms of a convergent infinite series. By employing the obtained CGF, the information channel between transmitter and transparent receiver of DMC in this environment is characterized. Interestingly, it is revealed that the information channel is reciprocal, i.e., interchanging the position of receiver and transmitter does not change the information channel. Results indicate that the conventional simplifying assumption that the environment is unbounded may lead to an inaccurate characterization in such biological environments

    A ROADMAP TO SAFE AND RELIABLE ENGINEERED BIOLOGICAL NANO-COMMUNICATION NETWORKS

    Get PDF
    Synthetic biology has the potential to benefit society with novel applications that can improve soil quality, produce biofuels, grow customized biological tissue, and perform intelligent drug delivery, among many other possibilities. Engineers are creating techniques to program living cells, inserting new logic, and leveraging cell-to-cell communication, which result in changes to a cell\u27s core functionality. Using these techniques, we can now create synthetic biological organisms (SBOs) with entirely new (potentially unseen) behaviors, which, similar to silicon devices, can sense, actuate, perform computation, and interconnect with other networks at the nanoscale level. SBOs are programmable evolving entities, and can be likened to self-adaptive programs that read inputs, process them, and produce outputs, reacting differently to different environmental conditions. With the increasing complexity of potential programs for SBOs, as in any new technology, there will be both beneficial as well as malicious uses. Although there has been much discussion about the potential safety and security risks of SBOs, and some research on predicting whether engineered life will be harmful, there has been little research on how to validate or verify safety of SBOs. In this thesis, we lay a foundation for validating and verifying safety for SBOs. We first present two case studies where we give insight into the difficulties of determining whether novel SBOs will be harmful given the vast combinatorial search space available for their engineering. Second, we explain how the current U.S. regulatory environment is fragmented with respect to the multiple dimensions of SBOs. Finally, we present a way forward for formalizing the architecture of SBOs and present a case study to show how we might utilize assurance cases to reason about SBO safety. Advisors: Myra Cohen and Massimiliano Pierobo
    corecore