8,541 research outputs found

    Magnetic susceptibility of alkali-TCNQ salts and extended Hubbard models with bond order and charge density wave phases

    Full text link
    The molar spin susceptibilities χ(T)\chi(T) of Na-TCNQ, K-TCNQ and Rb-TCNQ(II) are fit quantitatively to 450 K in terms of half-filled bands of three one-dimensional Hubbard models with extended interactions using exact results for finite systems. All three models have bond order wave (BOW) and charge density wave (CDW) phases with boundary V=Vc(U)V = V_c(U) for nearest-neighbor interaction VV and on-site repulsion UU. At high TT, all three salts have regular stacks of TCNQ\rm TCNQ^- anion radicals. The χ(T)\chi(T) fits place Na and K in the CDW phase and Rb(II) in the BOW phase with VVcV \approx V_c. The Na and K salts have dimerized stacks at T<TdT < T_d while Rb(II) has regular stacks at 100K. The χ(T)\chi(T) analysis extends to dimerized stacks and to dimerization fluctuations in Rb(II). The three models yield consistent values of UU, VV and transfer integrals tt for closely related TCNQ\rm TCNQ^- stacks. Model parameters based on χ(T)\chi(T) are smaller than those from optical data that in turn are considerably reduced by electronic polarization from quantum chemical calculation of UU, VV and tt on adjacent TCNQ\rm TCNQ^- ions. The χ(T)\chi(T) analysis shows that fully relaxed states have reduced model parameters compared to optical or vibration spectra of dimerized or regular TCNQ\rm TCNQ^- stacks.Comment: 9 pages and 5 figure

    Energy Level Alignment in Organic-Organic Heterojunctions: The TTF-TCNQ Interface

    Get PDF
    The energy level alignment of the two organic materials forming the TTF-TCNQ interface is analyzed by means of a local orbital DFT calculation, including an appropriate correction for the transport energy gaps associated with both materials. These energy gaps are determined by a combination of some experimental data and the results of our calculations for the difference between the TTF_{HOMO} and the TCNQ_{LUMO} levels. We find that the interface is metallic, as predicted by recent experiments, due to the overlap (and charge transfer) between the Density of States corresponding to these two levels, indicating that the main mechanism controlling the TTF-TCNQ energy level alignment is the charge transfer between the two materials. We find an induced interface dipole of 0.7 eV in good agreement with the experimental evidence. We have also analyzed the electronic properties of the TTF-TCNQ interface as a function of an external bias voltage \Delta, between the TCNQ and TTF crystals, finding a transition between metallic and insulator behavior for \Delta~0.5 eV

    Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ

    Get PDF
    The electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant discrepancies to band theory. We demonstrate that the measured dispersions can be consistently mapped onto the one-dimensional Hubbard model at finite doping. This interpretation is further supported by a remarkable transfer of spectral weight as function of temperature. The ARPES data thus show spectroscopic signatures of spin-charge separation on an energy scale of the conduction band width.Comment: 4 pages, 4 figures; to appear in PR

    Comparison between Density Functional Theory and Density Functional Tight Binding approaches for finding the muon stopping site in organic molecular crystals

    Full text link
    Finding the possible stopping sites for muons inside a crystalline sample is a key problem of muon spectroscopy. In a previous work, we suggested a computational approach to this problem, using Density Functional Theory software in combination with a random structure searching approach using a Poisson sphere distribution. In this work we test this methodology further by applying it to three organic molecular crystals model systems: durene, bithiophene, and tetracyanoquinodimethane (TCNQ). Using the same sets of random structures we compare the performance of Density Functional Theory software CASTEP and the much faster lower level approximation of Density Functional Tight Binding provided by DFTB+, combined with the use of the 3ob-3-1 parameter set. We show the benefits and limitations of such an approach and we propose the use of DFTB+ as a viable alternative to more cumbersome simulations for routine site-finding in organic materials. Finally, we introduce the Muon Spectroscopy Computational Project software suite, a library of Python tools meant to make these methods standardized and easy to use

    Comparing charge transfer tuning effects by chemical substitution and uniaxial pressure in the organic charge transfer complex tetramethoxypyrene-tetracyanoquinodimethane

    Get PDF
    In the search for novel organic charge transfer salts with variable charge transfer degree we study the effects of two modifications to the recently synthesized donor-acceptor Tetramethoxypyrene (TMP)-Tetracyanoquinodimethane (TCNQ). One is of chemical nature by substituting the acceptor TCNQ molecules by F4TCNQ molecules. The second consists in simulating the application of uniaxial pressure along the stacking axis of the system. In order to test the chemical substitution, we have grown single crystals of TMP-F4TCNQ and analyzed its electronic structure via electronic transport measurements, ab initio density functional theory (DFT) calculations and UV/VIS/IR absorption spectroscopy. This system shows an almost ideal geometrical overlap of nearly planar molecules alternately stacked (mixed stack) and this arrangement is echoed by a semiconductor-like transport behavior with an increased conductivity along the stacking direction. This is in contrast to TMP-TCNQ which shows a less pronounced anisotropy and a smaller conductivity response. Our bandstructure calculations confirm the one-dimensional behavior of TMP-F4TCNQ with pro- nounced dispersion only along the stacking axis. Infrared measurements illustrating the CN vibration frequency shift in F4TCNQ suggest however no improvement on the degree of charge transfer in TMP-F4TCNQ with respect to TMP-TCNQ. In both complexes about 0.1 is transferred from TMP to the acceptor. Concerning the pressure effect, our DFT calculations on designed TMP-TCNQ and TMP-F4TCNQ structures under different pressure conditions show that application of uniaxial pressure along the stacking axis of TMP-TCNQ may be the route to follow in order to obtain a much more pronounced charge transfer

    A multideterminant assessment of mean field methods for the description of electron transfer in the weak coupling regime

    Full text link
    Multideterminant calculations have been performed on model systems to emphasize the role of many-body effects in the general description of charge quantization experiments. We show numerically and derive analytically that a closed-shell ansatz, the usual ingredient of mean-field methods, does not properly describe the step-like electron transfer characteristic in weakly coupled systems. With the multideterminant results as a benchmark, we have evaluated the performance of common ab initio mean field techniques, such as Hartree Fock (HF) and Density Functional Theory (DFT) with local and hybrid exchange correlation functionals, with a special focus on spin-polarization effects. For HF and hybrid DFT, a qualitatively correct open-shell solution with distinct steps in the electron transfer behaviour can be obtained with a spin-unrestricted (i.e., spin-polarized) ansatz though this solution differs quantitatively from the multideterminant reference. We also discuss the relationship between the electronic eigenvalue gap and the onset of charge transfer for both HF and DFT and relate our findings to recently proposed practical schemes for calculating the addition energies in the Coulomb blockade regime for single molecule junctions from closed-shell DFT within the local density approximation

    Photophysics and Inverted Solvatochromism of 7,7,8,8-Tetracyanoquinodimethane (TCNQ)

    Get PDF
    We report the absorption, fluorescence, and Raman spectroscopy of 7,7,8,8- tetracyanoquinodimethane (TCNQ) in a variety of solvents. The fluorescence quantum yields (QYs) of linear alkane solutions are similar to one another, but QY is shown to acutely decrease in other solvents with increasing polarities. The slope of the solvatochromic plot of absorption maxima is inverted from negative to positive with an increase in solvent polarity. A significant change in the frequency of carbon-carbon double bond stretching modes is not observed in Raman spectra of TCNQ in different solvents. The molar absorption coefficient is determined to calculate the oscillator strength of the absorption band. The radiative decay rate constant calculated from the oscillator strength is approximately ten times larger than that elucidated from the fluorescence lifetime and QY. These spectroscopic parameters reveal that the relaxation occurs from a Franck-Condon excited state to a distinct fluorescence emissive state with a smaller transition dipole moment

    Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    Get PDF
    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)2PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray induced photoemission spectroscopy turns out to be a valuable non-destructive diagnostic tool. We show that the observation of generic one-dimensional signatures in photoemission spectra of the valence band close to the Fermi level can be strongly affected by surface effects. Especially, great care must be exercised taking evidence for an unusual one-dimensional many-body state exclusively from the observation of a pseudogap.Comment: 11 pages, 12 figures, v2: minor changes in text and figure labellin
    corecore