2,734,880 research outputs found

    The personality systems framework: Current theory and development

    Get PDF
    The personality systems framework is a fieldwide outline for organizing the contemporary science of personality. I examine the theoretical impact of systems thinking on the discipline and, drawing on ideas from general systems theory, argue that personality psychologists understand individuals’ personalities by studying four topics: (a) personality’s definition, (b) personality’s parts (e.g., traits, schemas, etc.), (c) its organization and (d) development. This framework draws on theories from the field to create a global view of personality including its position and major areas of function. The global view gives rise to new theories such as personal intelligence—the idea that people guide themselves with a broad intelligence they use to reason about personalities

    Discrete-time multi-scale systems

    Get PDF
    We introduce multi-scale filtering by the way of certain double convolution systems. We prove stability theorems for these systems and make connections with function theory in the poly-disc. Finally, we compare the framework developed here with the white noise space framework, within which a similar class of double convolution systems has been defined earlier

    Entropic Fluctuations in Quantum Statistical Mechanics. An Introduction

    Full text link
    These lecture notes provide an elementary introduction, within the framework of finite quantum systems, to recent developments in the theory of entropic fluctuations

    Single-mode approximation and effective Chern-Simons theories for quantum Hall systems

    Full text link
    A unified description of elementary and collective excitations in quantum Hall systems is presented within the single-mode approximation (SMA) framework, with emphasis on revealing an intimate link with Chern-Simons theories. It is shown that for a wide class of quantum Hall systems the SMA in general yields, as an effective theory, a variant of the bosonic Chern-Simons theory. For single-layer systems the effective theory agrees with the standard Chern-Simons theory at long wavelengths whereas substantial deviations arise for collective excitations in bilayer systems. It is suggested, in particular, that Hall-drag experiments would be a good place to detect out-of-phase collective excitations inherent to bilayer systems. It is also shown that the intra-Landau-level modes bear a similarity in structure (though not in scale) to the inter-Landau-level modes, and its implications on the composite-fermion and composite-boson theories are discussed.Comment: 9 pages, Revtex
    corecore