2 research outputs found

    Functional control structure model for the complex systems and its application in system safety analysis

    Get PDF
    The safety problem for the complex system is regarded as a control problem other than probability one, where the overall functional control structure model of the complex system could be configured in terms of the relationships among their functional labels. The hazards are due to the unsafe control actions (UCA), or the malfunctional control action (MCA). Meanwhile, UCA and MCA are due to the error feedback information (EFI), the error environment variables (EEV), the error state variables (ESE), the error command inputs (ECI), the error working modes (EWM), and the error process models (EPM), etc. Every function or component would be described as 10 labels, which are the input command (IC), the feedback to the upper level (FU), the control action (CA), the feedback from the lower levels (FL), the external input command (EC), the process model (PM), other related state variable (SV), the precondition (PC), the resource and the executing condition (RE) of the system, and the environment variable (EV). The aircraft wheel brake system’s control structure model is given to show its effectiveness

    System of systems hazard analysis using simulation and machine learning

    No full text
    In the operation of safety-critical systems, the sequences by which failures can lead to accidents can be many and complex. This is particularly true for the emerging class of systems known as systems of systems, as they are composed of many distributed, heterogenous and autonomous components. Performing hazard analysis on such systems is challenging, in part because it is difficult to know in advance which of the many observable or measurable features of the system are important for maintaining system safety. Hence there is a need for effective techniques to find causal relationships within these systems. This paper explores the use of machine learning techniques to extract potential causal relationships from simulation models. This is illustrated with a case study of a military system of systems
    corecore