122 research outputs found

    Active exoskeleton control systems: State of the art

    Get PDF
    To get a compliant active exoskeleton controller, the force interaction controllers are mostly used in form of either the impedance or admittance controllers. The impedance or admittance controllers can only work if they are followed by either the force or the position controller respectively. These combinations place the impedance or admittance controller as high-level controller while the force or position controller as low-level controller. From the application point of view, the exoskeleton controllers are equipped by task controllers that can be formed in several ways depend on the aims. This paper presents the review of the control systems in the existing active exoskeleton in the last decade. The exoskeleton control system can be categorized according to the model system, the physical parameters, the hierarchy and the usage. These considerations give different control schemes. The main consideration of exoskeleton control design is how to achieve the best control performances. However, stability and safety are other important issues that have to be considered. © 2012 The Authors

    Perceiving and predicting the intended motion with human-machine interaction force for walking assistive exoskeleton robot

    Full text link

    Wearable agrirobot

    Get PDF
    We have developed an exoskeleton robot for agriculture. It assists farmers in harvesting vegetables and fruits, and carrying the heavy load such as potato bags and cabbage boxes. We have made the robots for some types of farming and discussed the sensors and control of it. We have also performed experiments in order to demonstrate how the robot operates for agricultural purposes thereby showing the potential of the robo

    DETERMINATION OF HUMAN GAIT PHASE BY ZERO‐MOMENT POINT

    Get PDF
    This paper discuss approach to gait phase determination via fuzzy inference. The stability criteria applied to biped robots, namely Zero Moment Point (ZMP) have been employed. Designed fuzzy inference system uses data about the ZMP position. Gait phase is the output of our fuzzy system. Simplified human body model is introduced for computation of ZMP. Both inter- and intra-subject phase identification are examined. The developed fuzzy-rules based system is exemplified to show capability of different subjects gait data generalization. Results of designed fuzzy IF-THEN rules based system show that the proposed method is suitable for this type of task. We designed system to identify gait phases, which could potentially help to assess the quality of walking. Although the method for studying ZMP in combination with fuzzy logic could contribute to the design of new prosthesis and the diagnosis of disorders, this issue has not been systematically studied in the past

    Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.</p> <p>Methods</p> <p>Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.</p> <p>Results</p> <p>During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.</p> <p>Conclusion</p> <p>These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.</p

    Design and control methodology of a lower extremity assistive device

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A 1-DOF Assistive exoskeleton with virtual negative damping: Effects on the kinematic response of the lower limbs

    Full text link
    We propose a novel control method for lowerlimb assist that produces a virtual modification of the mechanical impedance of the human limbs. This effect is accomplished through the use of an exoskeleton that displays active impedance. The proposed method is aimed at improving the dynamic response of the human limbs, while preserving the user's control authority. Our goal is to use active-impedance exoskeleton control to improve the user's agility of motion, for example by reducing the average time needed to complete a movement. Our control method has been implemented in a 1-DOF exoskeleton designed to assist human subjects performing knee flexions and extensions. In this paper we discuss an initial study on the effect of negative exoskeleton damping (a particular case of active-impedance control) on the subject's time to complete a target-reaching motion. Experimental results show this effect to be statistically significant. On average, subjects were able to reduce the time to complete the motion by 16%
    corecore