14,814 research outputs found

    Object segmentation in depth maps with one user click and a synthetically trained fully convolutional network

    Get PDF
    With more and more household objects built on planned obsolescence and consumed by a fast-growing population, hazardous waste recycling has become a critical challenge. Given the large variability of household waste, current recycling platforms mostly rely on human operators to analyze the scene, typically composed of many object instances piled up in bulk. Helping them by robotizing the unitary extraction is a key challenge to speed up this tedious process. Whereas supervised deep learning has proven very efficient for such object-level scene understanding, e.g., generic object detection and segmentation in everyday scenes, it however requires large sets of per-pixel labeled images, that are hardly available for numerous application contexts, including industrial robotics. We thus propose a step towards a practical interactive application for generating an object-oriented robotic grasp, requiring as inputs only one depth map of the scene and one user click on the next object to extract. More precisely, we address in this paper the middle issue of object seg-mentation in top views of piles of bulk objects given a pixel location, namely seed, provided interactively by a human operator. We propose a twofold framework for generating edge-driven instance segments. First, we repurpose a state-of-the-art fully convolutional object contour detector for seed-based instance segmentation by introducing the notion of edge-mask duality with a novel patch-free and contour-oriented loss function. Second, we train one model using only synthetic scenes, instead of manually labeled training data. Our experimental results show that considering edge-mask duality for training an encoder-decoder network, as we suggest, outperforms a state-of-the-art patch-based network in the present application context.Comment: This is a pre-print of an article published in Human Friendly Robotics, 10th International Workshop, Springer Proceedings in Advanced Robotics, vol 7. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-89327-3\_16, Springer Proceedings in Advanced Robotics, Siciliano Bruno, Khatib Oussama, In press, Human Friendly Robotics, 10th International Workshop,

    Jacquard: A Large Scale Dataset for Robotic Grasp Detection

    Full text link
    Grasping skill is a major ability that a wide number of real-life applications require for robotisation. State-of-the-art robotic grasping methods perform prediction of object grasp locations based on deep neural networks. However, such networks require huge amount of labeled data for training making this approach often impracticable in robotics. In this paper, we propose a method to generate a large scale synthetic dataset with ground truth, which we refer to as the Jacquard grasping dataset. Jacquard is built on a subset of ShapeNet, a large CAD models dataset, and contains both RGB-D images and annotations of successful grasping positions based on grasp attempts performed in a simulated environment. We carried out experiments using an off-the-shelf CNN, with three different evaluation metrics, including real grasping robot trials. The results show that Jacquard enables much better generalization skills than a human labeled dataset thanks to its diversity of objects and grasping positions. For the purpose of reproducible research in robotics, we are releasing along with the Jacquard dataset a web interface for researchers to evaluate the successfulness of their grasping position detections using our dataset
    • …
    corecore