136 research outputs found

    Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition

    Full text link
    In this work we present a framework for the recognition of natural scene text. Our framework does not require any human-labelled data, and performs word recognition on the whole image holistically, departing from the character based recognition systems of the past. The deep neural network models at the centre of this framework are trained solely on data produced by a synthetic text generation engine -- synthetic data that is highly realistic and sufficient to replace real data, giving us infinite amounts of training data. This excess of data exposes new possibilities for word recognition models, and here we consider three models, each one "reading" words in a different way: via 90k-way dictionary encoding, character sequence encoding, and bag-of-N-grams encoding. In the scenarios of language based and completely unconstrained text recognition we greatly improve upon state-of-the-art performance on standard datasets, using our fast, simple machinery and requiring zero data-acquisition costs

    Smart Augmentation - Learning an Optimal Data Augmentation Strategy

    Get PDF
    A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks(DNN). There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method which we call Smart Augmentation and we show how to use it to increase the accuracy and reduce overfitting on a target network. Smart Augmentation works by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart Augmentation has shown the potential to increase accuracy by demonstrably significant measures on all datasets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases

    Generating Text Sequence Images for Recognition

    Full text link
    Recently, methods based on deep learning have dominated the field of text recognition. With a large number of training data, most of them can achieve the state-of-the-art performances. However, it is hard to harvest and label sufficient text sequence images from the real scenes. To mitigate this issue, several methods to synthesize text sequence images were proposed, yet they usually need complicated preceding or follow-up steps. In this work, we present a method which is able to generate infinite training data without any auxiliary pre/post-process. We tackle the generation task as an image-to-image translation one and utilize conditional adversarial networks to produce realistic text sequence images in the light of the semantic ones. Some evaluation metrics are involved to assess our method and the results demonstrate that the caliber of the data is satisfactory. The code and dataset will be publicly available soon

    Visual Semantic Re-ranker for Text Spotting

    Get PDF
    Many current state-of-the-art methods for text recognition are based on purely local information and ignore the semantic correlation between text and its surrounding visual context. In this paper, we propose a post-processing approach to improve the accuracy of text spotting by using the semantic relation between the text and the scene. We initially rely on an off-the-shelf deep neural network that provides a series of text hypotheses for each input image. These text hypotheses are then re-ranked using the semantic relatedness with the object in the image. As a result of this combination, the performance of the original network is boosted with a very low computational cost. The proposed framework can be used as a drop-in complement for any text-spotting algorithm that outputs a ranking of word hypotheses. We validate our approach on ICDAR'17 shared task dataset

    Extracting textual overlays from social media videos using neural networks

    Full text link
    Textual overlays are often used in social media videos as people who watch them without the sound would otherwise miss essential information conveyed in the audio stream. This is why extraction of those overlays can serve as an important meta-data source, e.g. for content classification or retrieval tasks. In this work, we present a robust method for extracting textual overlays from videos that builds up on multiple neural network architectures. The proposed solution relies on several processing steps: keyframe extraction, text detection and text recognition. The main component of our system, i.e. the text recognition module, is inspired by a convolutional recurrent neural network architecture and we improve its performance using synthetically generated dataset of over 600,000 images with text prepared by authors specifically for this task. We also develop a filtering method that reduces the amount of overlapping text phrases using Levenshtein distance and further boosts system's performance. The final accuracy of our solution reaches over 80A% and is au pair with state-of-the-art methods.Comment: International Conference on Computer Vision and Graphics (ICCVG) 201

    A Review on Text Detection Techniques

    Get PDF
    Text detection in image is an important field. Reading text is challenging because of the variations in images. Text detection is useful for many navigational purposes e.g. text on google API’s and traffic panels etc. This paper analyzes the work done on text detection by many researchers and critically evaluates the techniques designed for text detection and states the limitation of each approach. We have integrated the work of many researchers for getting a brief over view of multiple available techniques and their strengths and limitations are also discussed to give readers a clear picture. The major dataset discussed in all these papers are ICDAR 2003, 2005, 2011, 2013 and SVT(street view text).
    • …
    corecore