1,227 research outputs found

    FieldSAFE: Dataset for Obstacle Detection in Agriculture

    Full text link
    In this paper, we present a novel multi-modal dataset for obstacle detection in agriculture. The dataset comprises approximately 2 hours of raw sensor data from a tractor-mounted sensor system in a grass mowing scenario in Denmark, October 2016. Sensing modalities include stereo camera, thermal camera, web camera, 360-degree camera, lidar, and radar, while precise localization is available from fused IMU and GNSS. Both static and moving obstacles are present including humans, mannequin dolls, rocks, barrels, buildings, vehicles, and vegetation. All obstacles have ground truth object labels and geographic coordinates.Comment: Submitted to special issue of MDPI Sensors: Sensors in Agricultur

    Autonomous Personal Mobility Scooter for Multi-Class Mobility-On-Demand Service

    Get PDF
    In this paper, we describe the design and development of an autonomous personal mobility scooter that was used in public trials during the 2016 MIT Open House, for the purpose of raising public awareness and interest about autonomous vehicles. The scooter is intended to work cooperatively with other classes of autonomous vehicles such as road cars and golf cars to improve the efficacy of Mobility-on-Demand transportation solutions. The scooter is designed to be robust, reliable, and safe, while operating under prolonged durations. The flexibility in fleet expansion is shown by replicating the system architecture and sensor package that has been previously implemented in the road car and golf cars. We show that the vehicle performed robustly with small localization variance. A survey of the users shows that the public is very receptive to the concept of the autonomous personal mobility device.Singapore-MIT Alliance for Research and Technology (SMART) (Future Urban Mobility research program)Singapore. National Research Foundatio

    Fail-aware LIDAR-based odometry for autonomous vehicles

    Get PDF
    Autonomous driving systems are set to become a reality in transport systems and, so, maximum acceptance is being sought among users. Currently, the most advanced architectures require driver intervention when functional system failures or critical sensor operations take place, presenting problems related to driver state, distractions, fatigue, and other factors that prevent safe control. Therefore, this work presents a redundant, accurate, robust, and scalable LiDAR odometry system with fail-aware system features that can allow other systems to perform a safe stop manoeuvre without driver mediation. All odometry systems have drift error, making it difficult to use them for localisation tasks over extended periods. For this reason, the paper presents an accurate LiDAR odometry system with a fail-aware indicator. This indicator estimates a time window in which the system manages the localisation tasks appropriately. The odometry error is minimised by applying a dynamic 6-DoF model and fusing measures based on the Iterative Closest Points (ICP), environment feature extraction, and Singular Value Decomposition (SVD) methods. The obtained results are promising for two reasons: First, in the KITTI odometry data set, the ranking achieved by the proposed method is twelfth, considering only LiDAR-based methods, where its translation and rotation errors are 1.00% and 0.0041 deg/m, respectively. Second, the encouraging results of the fail-aware indicator demonstrate the safety of the proposed LiDAR odometry system. The results depict that, in order to achieve an accurate odometry system, complex models and measurement fusion techniques must be used to improve its behaviour. Furthermore, if an odometry system is to be used for redundant localisation features, it must integrate a fail-aware indicator for use in a safe manner

    Perception for autonomous driving in urban road environment

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Robust Localization in 3D Prior Maps for Autonomous Driving.

    Full text link
    In order to navigate autonomously, many self-driving vehicles require precise localization within an a priori known map that is annotated with exact lane locations, traffic signs, and additional metadata that govern the rules of the road. This approach transforms the extremely difficult and unpredictable task of online perception into a more structured localization problem—where exact localization in these maps provides the autonomous agent a wealth of knowledge for safe navigation. This thesis presents several novel localization algorithms that leverage a high-fidelity three-dimensional (3D) prior map that together provide a robust and reliable framework for vehicle localization. First, we present a generic probabilistic method for localizing an autonomous vehicle equipped with a 3D light detection and ranging (LIDAR) scanner. This proposed algorithm models the world as a mixture of several Gaussians, characterizing the z-height and reflectivity distribution of the environment—which we rasterize to facilitate fast and exact multiresolution inference. Second, we propose a visual localization strategy that replaces the expensive 3D LIDAR scanners with significantly cheaper, commodity cameras. In doing so, we exploit a graphics processing unit to generate synthetic views of our belief environment, resulting in a localization solution that achieves a similar order of magnitude error rate with a sensor that is several orders of magnitude cheaper. Finally, we propose a visual obstacle detection algorithm that leverages knowledge of our high-fidelity prior maps in its obstacle prediction model. This not only provides obstacle awareness at high rates for vehicle navigation, but also improves our visual localization quality as we are cognizant of static and non-static regions of the environment. All of these proposed algorithms are demonstrated to be real-time solutions for our self-driving car.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133410/1/rwolcott_1.pd
    corecore