854 research outputs found

    A Stereo Vision Framework for 3-D Underwater Mosaicking

    Get PDF

    Synthesizing Efficiently Monitorable Formulas in Metric Temporal Logic

    Full text link
    In runtime verification, manually formalizing a specification for monitoring system executions is a tedious and error-prone process. To address this issue, we consider the problem of automatically synthesizing formal specifications from system executions. To demonstrate our approach, we consider the popular specification language Metric Temporal Logic (MTL), which is particularly tailored towards specifying temporal properties for cyber-physical systems (CPS). Most of the classical approaches for synthesizing temporal logic formulas aim at minimizing the size of the formula. However, for efficiency in monitoring, along with the size, the amount of "lookahead" required for the specification becomes relevant, especially for safety-critical applications. We formalize this notion and devise a learning algorithm that synthesizes concise formulas having bounded lookahead. To do so, our algorithm reduces the synthesis task to a series of satisfiability problems in Linear Real Arithmetic (LRA) and generates MTL formulas from their satisfying assignments. The reduction uses a novel encoding of a popular MTL monitoring procedure using LRA. Finally, we implement our algorithm in a tool called TEAL and demonstrate its ability to synthesize efficiently monitorable MTL formulas in a CPS application

    Decomposition tool targeting FPGA architectures

    Full text link
    The growing interest in the field of logic synthesis targeting Field Programmable Gate Arrays (FPGA) and the active research carried out by a number of research groups in the area of functional decomposition is the prime motivation for this thesis. Logic synthesis has been an area of interest in many universities all over the world. The work involves the study and implementation of techniques and methods in logic synthesis. In this work, a logic synthesis tool has been developed implementing the aspects of general and complete Decomposition method based on functional decomposition techniques [4]. The tool is aimed at producing outputs faster and more efficient than the available software. C++ Standard template library is used to develop this tool. The output of this tool is designed to be compatible with the available vendor software. The tool has been tested on MCNC benchmarks and those created keeping in mind the industry requirements
    • 

    corecore