5 research outputs found

    Modern Power System Dynamic Performance Improvement through Big Data Analysis

    Get PDF
    Higher penetration of Renewable Energy (RE) is causing generation uncertainty and reduction of system inertia for the modern power system. This phenomenon brings more challenges on the power system dynamic behavior, especially the frequency oscillation and excursion, voltage and transient stability problems. This dissertation work extracts the most useful information from the power system features and improves the system dynamic behavior by big data analysis through three aspects: inertia distribution estimation, actuator placement, and operational studies.First of all, a pioneer work for finding the physical location of COI in the system and creating accurate and useful inertia distribution map is presented. Theoretical proof and dynamic simulation validation have been provided to support the proposed method for inertia distribution estimation based on measurement PMU data. Estimation results are obtained for a radial system, a meshed system, IEEE 39 bus-test system, the Chilean system, and a real utility system in the US. Then, this work provided two control actuator placement strategy using measurement data samples and machine learning algorithms. The first strategy is for the system with single oscillation mode. Control actuators should be placed at the bus that are far away from the COI bus. This rule increased damping ratio of eamples systems up to 14\% and hugely reduced the computational complexity from the simulation results of the Chilean system. The second rule is created for system with multiple dynamic problems. General and effective guidance for planners is obtained for IEEE 39-bus system and IEEE 118-bus system using machine learning algorithms by finding the relationship between system most significant features and system dynamic performance. Lastly, it studied the real-time voltage security assessment and key link identification in cascading failure analysis. A proposed deep-learning framework has Achieved the highest accuracy and lower computational time for real-time security analysis. In addition, key links are identified through distance matrix calculation and probability tree generation using 400,000 data samples from the Western Electricity Coordinating Council (WECC) system

    Utilizing Converter-Interfaced Sources for Frequency Control with Guaranteed Performance in Power Systems

    Get PDF
    To integrate renewable energy, converter-interfaced sources (CISs) keep penetrating into power systems and degrade the grid frequency response. Control synthesis towards guaranteed performance is a challenging task. Meanwhile, the potentials of highly controllable converters are far from fully developed. With properly designed controllers the CISs can not only eliminate the negative impacts on the grid, but also provide performance guarantees.First, the wind turbine generator (WTG) is chosen to represent the CISs. An augmented system frequency response (ASFR) model is derived, including the system frequency response model and a reduced-order model of the WTG representing the supportive active power due to the supplementary inputs.Second, the framework for safety verification is introduced. A new concept, region of safety (ROS), is proposed, and the safe switching principle is provided. Two different approaches are proposed to estimate the largest ROS, which can be solved using the sum of squares programming.Third, the critical switching instants for adequate frequency response are obtained through the study of the ASFR model. A safe switching window is discovered, and a safe speed recovery strategy is proposed to ensure the safety of the second frequency dip due to the WTG speed recovery.Fourth, an adaptive safety supervisory control (SSC) is proposed with a two-loop configuration, where the supervisor is scheduled with respect to the varying renewable penetration level. For small-scale system, a decentralized fashion of the SSC is proposed under rational approximations and verified on the IEEE 39-bus system.Fifth, a two-level control diagram is proposed so that the frequency of a microgrid satisfies the temporal logic specifications (TLSs). The controller is configured into a scheduling level and a triggering level. The satisfaction of TLSs will be guaranteed by the scheduling level, and triggering level will determine the activation instant.Finally, a novel model reference control based synthetic inertia emulation strategy is proposed. This novel control strategy ensures precise emulated inertia by the WTGs as opposed to the trial and error procedure of conventional methods. Safety bounds can be easily derived based on the reference model under the worst-case scenario
    corecore