3 research outputs found

    Diphthong Synthesis using the Three-Dimensional Dynamic Digital Waveguide Mesh

    Get PDF
    The human voice is a complex and nuanced instrument, and despite many years of research, no system is yet capable of producing natural-sounding synthetic speech. This affects intelligibility for some groups of listeners, in applications such as automated announcements and screen readers. Furthermore, those who require a computer to speak - due to surgery or a degenerative disease - are limited to unnatural-sounding voices that lack expressive control and may not match the user's gender, age or accent. It is evident that natural, personalised and controllable synthetic speech systems are required. A three-dimensional digital waveguide model of the vocal tract, based on magnetic resonance imaging data, is proposed here in order to address these issues. The model uses a heterogeneous digital waveguide mesh method to represent the vocal tract airway and surrounding tissues, facilitating dynamic movement and hence speech output. The accuracy of the method is validated by comparison with audio recordings of natural speech, and perceptual tests are performed which confirm that the proposed model sounds significantly more natural than simpler digital waveguide mesh vocal tract models. Control of such a model is also considered, and a proof-of-concept study is presented using a deep neural network to control the parameters of a two-dimensional vocal tract model, resulting in intelligible speech output and paving the way for extension of the control system to the proposed three-dimensional vocal tract model. Future improvements to the system are also discussed in detail. This project considers both the naturalness and control issues associated with synthetic speech and therefore represents a significant step towards improved synthetic speech for use across society

    Context-aware speech synthesis: A human-inspired model for monitoring and adapting synthetic speech

    Get PDF
    The aim of this PhD thesis is to illustrate the development a computational model for speech synthesis, which mimics the behaviour of human speaker when they adapt their production to their communicative conditions. The PhD project was motivated by the observed differences between state-of-the- art synthesiser’s speech and human production. In particular, synthesiser outcome does not exhibit any adaptation to communicative context such as environmental disturbances, listener’s needs, or speech content meanings, as the human speech does. No evaluation is performed by standard synthesisers to check whether their production is suitable for the communication requirements. Inspired by Lindblom's Hyper and Hypo articulation theory (H&H) theory of speech production, the computational model of Hyper and Hypo articulation theory (C2H) is proposed. This novel computational model for automatic speech production is designed to monitor its outcome and to be able to control the effort involved in the synthetic speech generation. Speech transformations are based on the hypothesis that low-effort attractors for a human speech production system can be identified. Such acoustic configurations are close to minimum possible effort that a speaker can make in speech production. The interpolation/extrapolation along the key dimension of hypo/hyper-articulation can be motivated by energetic considerations of phonetic contrast. The complete reactive speech synthesis is enabled by adding a negative perception feedback loop to the speech production chain in order to constantly assess the communicative effectiveness of the proposed adaptation. The distance to the original communicative intents is the control signal that drives the speech transformations. A hidden Markov model (HMM)-based speech synthesiser along with the continuous adaptation of its statistical models is used to implement the C2H model. A standard version of the synthesis software does not allow for transformations of speech during the parameter generation. Therefore, the generation algorithm of one the most well-known speech synthesis frameworks, HMM/DNN-based speech synthesis framework (HTS), is modified. The short-time implementation of speech intelligibility index (SII), named extended speech intelligibility index (eSII), is also chosen as the main perception measure in the feedback loop to control the transformation. The effectiveness of the proposed model is tested by performing acoustic analysis, objective, and subjective evaluations. A key assessment is to measure the control of the speech clarity in noisy condition, and the similarities between the emerging modifications and human behaviour. Two objective scoring methods are used to assess the speech intelligibility of the implemented system: the speech intelligibility index (SII) and the index based upon the Dau measure (Dau). Results indicate that the intelligibility of C2H-generated speech can be continuously controlled. The effectiveness of reactive speech synthesis and of the phonetic contrast motivated transforms is confirmed by the acoustic and objective results. More precisely, in the maximum-strength hyper-articulation transformations, the improvement with respect to non-adapted speech is above 10% for all intelligibility indices and tested noise conditions

    Synthesising hyperarticulation in unit selection TTS

    Get PDF
    Within speech synthesis we often wish to give extra focus to words which carry important information, such as names, dates and amounts. In this paper we look carefully at cost functions that can be used to bias unit selection in favour of hyperarticulated speech in order to give this impression of focus. Hyper-articulated speech tends to be accented, emphatic and requires more articulatory effort. We apply two cost functions to try to force the selection of hyper-articulated speech. The first operates on the duration of units in the unit selection database, the second on the language redundancy (word trigram predictability) of the word containing the unit. We estimate their relative importance in selecting hyper-articulated speech in unit selection speech synthesis. A listening test was carried out where these cost functions were applied to one random content word in a haskins anomalous sentence. Listeners were asked to select the two clearest and most focused words from the sentence. The duration increasing cost function was significantly related to an increase in perceived prominence whereas low redundancy, and a combination of both approaches did not produce significant results. Thus, although a significant correlation exists between the average duration and redundancy of diphones and perceived prominence, such a correlation was not smoothly translated into error free method for altering such perceived prominence. 1
    corecore