4 research outputs found

    Program Synthesis Meets Deep Learning for Decoding Regulatory Networks

    Get PDF
    With ever growing data sets spanning DNA sequencing all the way to single-cell transcriptomics, we are now facing the question of how can we turn this vast amount of information into knowledge. How do we integrate these large data sets into a coherent whole to help understand biological programs? The last few years have seen a growing interest in machine learning methods to analyse patterns in high-throughput data sets and an increasing interest in using program synthesis techniques to reconstruct and analyse executable models of gene regulatory networks. In this review, we discuss the synergies between the two methods and share our views on how they can be combined to reconstruct executable mechanistic programs directly from large-scale genomic data

    Revealing the vectors of cellular identity with single-cell genomics

    Get PDF
    Single-cell genomics has now made it possible to create a comprehensive atlas of human cells. At the same time, it has reopened definitions of a cell's identity and of the ways in which identity is regulated by the cell's molecular circuitry. Emerging computational analysis methods, especially in single-cell RNA sequencing (scRNA-seq), have already begun to reveal, in a data-driven way, the diverse simultaneous facets of a cell's identity, from discrete cell types to continuous dynamic transitions and spatial locations. These developments will eventually allow a cell to be represented as a superposition of 'basis vectors', each determining a different (but possibly dependent) aspect of cellular organization and function. However, computational methods must also overcome considerable challenges-from handling technical noise and data scale to forming new abstractions of biology. As the scale of single-cell experiments continues to increase, new computational approaches will be essential for constructing and characterizing a reference map of cell identities.National Institutes of Health (U.S.) (grant P50 HG006193)BRAIN Initiative (grant U01 MH105979)National Institutes of Health (U.S.) (BRAIN grant 1U01MH105960-01)National Cancer Institute (U.S.) (grant 1U24CA180922)National Institute of Allergy and Infectious Diseases (U.S.) (grant 1U24AI118672-01
    corecore