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2. Abstract 
3. New single-cell technologies readily permit gene expression profiling of thousands of cells at 

single-cell resolution. In this review we will discuss methods for visualisation and interpretation of 

single-cell gene expression data, and the computational analysis needed to go from raw data to 

predictive executable models of gene regulatory network function. We will focus primarily on 

single-cell real-time quantitative PCR and RNA sequencing data, but much of what we cover will 

also be relevant to other platforms, such as the mass cytometry technology for high dimensional 

single-cell proteomics. 

4. Introduction 
Recent advances in protocols, microfluidics technology, and a reduction in costs have opened up a 

new field of single-cell genomics. This new field promises to provide insights into cellular identity 

and decision making over more conventional bulk population data, which averages over the 

properties thousands of cells and therefore obscures the state of individual cells
1
. 

 
5. After experimental measurement, data must firstly be processed and normalised to ensure correct 

interpretation. We will begin with a discussion of the steps needed to process single-cell qPCR data, 

which can simultaneously measure the level of expression of tens to hundreds of genes, and the 

newer technique of single-cell RNA-sequencing, which can sample the whole transcriptome. Once 

these steps have been carried out subsequent analysis can be applied to answer specific biological 

questions. 

 
Typically one of the first questions a researcher will want to ask about their single-cell expression 

data set is whether interesting sub-populations with characteristic gene expression profiles can be 

identified
2,3,4,5,6,7

. These sub-populations might represent previously unidentified cell types or cells 

with an abnormal phenotype. For example, in a study of the immune system, two separate 

populations might correspond to activated and naive cells, or in a patient sample, to cancerous and 

healthy cells
8,9,10,11,12

. Once identified, the sub-populations can be isolated and investigated further. 

Population-level gene expression data, on the other hand, would average out the differences 
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between these groups, giving a representative view of neither. We will discuss different algorithms 

for visualising and identifying structure in single-cell gene expression data sets (Figure 1). 

Once structure has been identified, the researcher can investigate potential biological processes that 

have been captured in the data. Often, the data are representative of a developmental or 

differentiation time-course, with early cells such as stem cells or early progenitors progressing to 

more mature cells
13,14,15

. In this case, the single cell profiling data set can be used for gene 

regulatory network reconstruction. We will discuss several techniques for reconstructing the 

regulatory networks driving the journey from early to late cell types (Figure 1). Some of these 

methods have been adapted from analyses of population data, and some have been specifically 

developed to take advantage of single-cell resolution data. 

1. Data Processing 

1.1. qPCR on the Fluidigm BioMark 

The Fluidigm BioMark platform uses microfluidics devices to scale back reagent and sample 

requirements, thereby facilitating thousands of parallel qPCR reactions and allowing up to 96 genes 

to be assayed in a single cell.  Initial data processing takes place using the Fluidigm Real-Time PCR 

Analysis Software. Like conventional qPCR, the BioMark outputs Ct values, and the software 

allows sample and assay names to be assigned along with the quality thresholds, baseline correction 

methods and Ct thresholds used to calculate the final Ct values. 

  

Next, expression values that fall outside of the linear range of the BioMark HD or the assays are 

excluded from further analysis. To do this, a limit of detection (LOD) is calculated from standard 

curves for each primer set as the last Ct value at which amplification can be reliably and repeatedly 

detected
13,17

. Ct values higher than the LOD, as well as samples where the amplification has failed 

entirely or where the amplification curves have failed quality control are usually given the same 

value as the limit of detection and treated as not detected.   

 
Additional filtering can be used to exclude whole genes or samples.  For example, genes may be 

excluded where there is amplification in typically >10% of no template controls, and where the 

amplification level in no template controls is too similar to that of single cells to be sure that the 

expression in the cells is real.  In published studies, cells have been excluded from the analysis 

based on a number of criteria, including lack of expression of key or housekeeping genes, 

expression of no or low numbers of cells, or where the expression of particular genes differs 

significantly from the population
3,4,18,19

, although these can also occur due to the choice of genes 

and transcriptional bursting rather than due to a poor quality or missing cell. 

 
Single cell expression data are typically log-normally distributed

16
 so it is useful to view data on a 

Log2 scale.   The final step of processing therefore converts the data either to ΔCt values 

normalized against one or more housekeeping genes which exhibit stable expression across the 

populations
3,4,15,18,19,20,21

, or as the Log2 expression above the LOD (PCR cycles above background; 

Log2Ex)
22,23

.  Log2Ex values can be further normalized to remove variability due to factors such as 

cell size
17

.  Fluidigm have now generated an R package, Singular, for processing and basic analysis 

of single cell qPCR and RNAseq data. 
  

1.2 Single cell RNAseq 

Single cell RNAseq (scRNAseq) has recently come to the fore for transcriptomics due to increases 

in multiplexing and concurrent decreases in price.  Compared with qPCR, it offers the potential to 

©    2015 Macmillan Publishers Limited. All rights reserved.



3 
 

study the entire transcriptome rather than a specific set of pre-selected genes, so has a much wider 

potential for discovery.  However, there are many current challenges both for processing samples 

and analyzing data
24,25

. 

 
There are many different scRNAseq protocols which can capture different aspects of the 

transcriptome depending on the priming and reverse transcription (RT) methods used.  Typically, 

either the 5’ or 3’ end of the transcript is captured
26,27

, although some methods can capture entire 

transcripts
28,29

. Samples are multiplexed using indexed primers during library preparation, with 96 

to 384 individual cells sequenced per lane of a flow cell.  After sequencing, samples are 

deconvoluted based on index sequences, and normalised read counts are generated for further 

analysis.  Alternatively, short and unique DNA sequences (unique molecular identifiers, UMI) can 

be incorporated into every transcript during the RT step to act as barcodes to enable molecule 

counting.  Regardless of how many times a transcript-UMI pair is sequenced, it can only have come 

from a single mRNA within the cell and so is only counted once, with the total number of UMIs per 

transcript summed to give an absolute expression count for each gene
30

.  However, this currently 

only allows for the sequencing of the 3’ end of the transcript, providing information about 

expression levels but not splicing. 

 
Quality check of samples is an important step before downstream analysis. An important quality 

control method for scRNAseq is the inclusion of extrinsic standards to facilitate normalization and 

comparison between single cells.  Typically, RNA standards of known concentration and sequence, 

such as the External RNA Control Consortium (ERCC) set of 92 artificial RNA molecules
31

, are 

spiked into the reverse transcription step.  These molecules should be amplified uniformly across 

samples, so can be used to estimate RT efficiency, technical variation in library preparation and to 

indicate which genes show real biological variation as well as technical noise. Spikes can 

additionally be used to identify cells with degraded RNA, for example where the percentage of 

mapped reads is particularly low compared with reads mapped to spike molecules. Other important 

metrics which are used for quality control and to discard poor-quality cells include the fraction of 

reads mapped to mitochondrial genes (a large fraction is believed to be indicative of the cell 

undergoing apoptosis)
25,32

. Principal component analysis (discussed later), can also be used to 

identify outlier cells, based upon the assumption that good-quality cells will cluster together while 

poor-quality cells will be isolated
25

. 

 
Samples undergo initial quality control prior to alignment, with tools originally developed for bulk 

RNA-seq such as fastqc which monitor sequencing quality, GC nucleotide content, sequence length 

and so on.  Reads are assigned to individual cells based on their indexes, the sequencing adapters 

are trimmed off and the resultant sequences are mapped to a reference transcriptome using existing 

alignment tools such as TopHat
33

, Star
34

 or GSNAP
35

.  Tools such as HTseq
36

 are then used to 

generate read counts per gene. Further quality control, as discussed above, can then be carried out. 

Normalisation is required to account for differences in sequencing depth between samples, which is 

calculated from the total mappable reads and the ratio of mapped reads to those coming from spike 

molecules. However, adequate normalization of scRNAseq data is an ongoing challenge
25

 as much 

is still unknown about technical variation in library preparation and sequencing bias towards 

particular transcripts. 

 
Once we have processed and normalised our data set we can begin to ask interesting biological 

questions about the cells that we have measured. Usually the first thing we would like to do is to try 

to identify and visualise structure in the data and establish which biological processes have been 

captured. We will discuss methods for doing this in the next section. 
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6. 2. Visualisation 
High-dimensional data sets can be hard to visualise. A two or three dimensional data set can be 

directly plotted to try to reveal structure in the data (Figure 2a). This is not possible with high 

dimensional data such as a single-cell gene expression data set, which has a dimension 

corresponding to each measured gene. In the field of machine learning, a number of clustering and 

dimensionality reduction techniques have been developed to help aid visualisation of high-

dimensional data
37,38

. Clustering algorithms attempt to group data points into subsets called clusters, 

where data points within a cluster are more similar to each other than to points from different 

clusters. Dimensionality reduction algorithms attempt to transform the high-dimensional data set 

into a lower-dimensional (2 or 3) representation that can then be directly plotted and visualised. 

1. 2. 1. Hierarchical clustering 
Agglomerative hierarchical clustering has been used to identify sub-populations in single-cell 

data
4,22

. Rather than seeking to identify a predetermined number of clusters, the algorithm 

recursively builds a hierarchical representation of the data where each level organises the data into a 

different number of clusters. This makes the algorithm useful for exploratory analysis. 

At the beginning of the algorithm each data point is placed into its own cluster. Then, at each 

subsequent step the two most similar clusters from the previous iteration are merged into one. The 

algorithm terminates when all of the data lies in a single cluster
37

. 

The results of hierarchical clustering can be plotted as a heat map (a coloured representation of the 

data matrix, reorganised according to the clustering) with a dendrogram, which is a binary tree 

showing the hierarchical neighbour relationships between clusters. As we go to higher levels in the 

dendrogram, the dissimilarity between merged clusters increases. By examining the reorganised 

expression matrix, and the cell types and gene expression patterns of closely placed points, natural 

clusters can often be discerned by eye (Figure 2b). 

Before hierarchical clustering can be performed, two measures of similarity need to be specified: a 

notion of distance between pairs of data points, and a notion of distance between clusters (the 

linkage criterion), defined in terms of the distance between data points. For the distance between 

data points, the Euclidean, Manhattan or Spearman correlation distance can be used. For the linkage 

criterion between clusters A and B, one distance is the nearest neighbour distance (known as single 

linkage), which is the distance between the point in A and the point in B which are most similar. A 

second distance is the farthest neighbour (known as complete linkage), which is the distance 

between the point in A and the point in B which are least similar. 

Care must be taken when interpreting the results of hierarchical clustering, keeping in mind that 

different choices of dissimilarity measure and linkage criterion will result in different hierarchies, 

and that the algorithm will always impose a hierarchy on the data whether or not one truly exists. 

Many other clusterings algorithms exist, but hierarchical clustering and related methods stand out in 

their utility for exploratory visualisation. Spectral clustering is closely related to diffusion maps
39

 

(discussed later). DBSCAN is a very commonly used algorithm which groups together points with 

many nearby neighbours
40

. K-means clustering clustering places each point into the cluster with the 

closest mean, but requires the desired number of clusters to be specified a-priori (and is therefore 

best used for classification after using another method for exploratory visualisation)
41

. 

The SPADE algorithm was introduced specifically for the analysis of single-cell data, and is based 

upon firstly applying hierarchical clustering, and then linking clusters together using a minimum 

spanning tree to infer developmental progression, while taking into account the existence of rare 

cell populations via density-dependent downsampling
42

. The BackSPIN algorithm is conceptually 
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similar to hierarchical clustering, but seeks to avoid noise from cell dissimilarity caused by 

uninformative genes. It works by sorting the gene expression matrix through cell-cell and gene-gene 

similarity
43

. Grün et al. recently introduced an algorithm, RaceID, designed specifically for 

identification of rare cell types in single cell data
44

. 

 

2. 2. 2. Principal component analysis 
The most ubiquitous tool used for dimensionality reduction is principal component analysis (PCA). 

PCA is used to find a projection of the data onto a smaller linear subspace, such that the variance of 

the projected data is maximised (the data points are spread out as much as possible)
37,38

. 

PCA finds a sequence of uncorrelated best linear approximations of the data, which are ordered in 

decreasing order of variance and are known as principal components. The first two or three of these 

components can be retained and plotted as a scatter plot to perform dimensionality reduction
4,22,45

. 

Equivalently, PCA can viewed as an instance of the Multidimensional Scaling (MDS) algorithm 

with Euclidean distances. MDS attempts to preserve all pairwise distances between data points in 

the high-dimensional space, as best as possible
46

. In general, the method will fail to preserve all 

pairwise distances perfectly. For example, in a ten dimensional data set, up to 11 data points may be 

mutually equidistant, while there is no way to accurately represent this in a three dimensional plot. 

The advantages of principal component analysis are its simplicity, its computational efficiency and 

its direct interpretation in terms of linear combinations of genes. A disadvantage is that it fails to 

capture non-linear structure in the data. Single-cell gene expression data in particular can be 

expected to be highly non-linear (Figure 3d). Manifold learning and graph-based visualisations, 

discussed next, attempt to address this weakness. Non-linear generalisations of PCA also exist, 

most notably kernel PCA, which also falls into the class of manifold learning algorithms
47

. 

 

3. 2.3. Non-linear manifold learning 
In general, there is no way to represent a high-dimensional data set in a lower dimensional space 

without discarding information. Different dimensionality reduction tools therefore aim to embed the 

data in a way that preserves some particular property of interest. We will focus the remainder of our 

discussion on two non-linear dimensionality reduction methods that have recently been used to 

visualise single cell gene expression data: t-Distributed Stochastic Neighbor Embedding (t-SNE) 

and diffusion maps. 

t-SNE aims to preserve the pairwise distance between points, but (unlike MDS/PCA) only between 

those points which are very close neighbours in the high dimensional space, focusing only on 

preserving local structure rather than attempting to preserve pairwise distances between all points
48

. 

This allows the global structure of the embedding to become non-linear, as distances at different 

regions of the embedding are allowed to correspond differently to distances in the high dimensional 

space. Diffusion maps attempt to reconstruct the global non-linear connectivity of the data from a 

local random walk on the data, and place points close together in the low-dimensional map if they 

are connected by many short paths in the high-dimensional space
49,50

. 

Diffusion maps and t-SNE belong to a class of techniques known as manifold learning algorithms. 

Manifold learning is based on the hypothesis that the dimensionality of the data under consideration 

is only artificially high, and that rather than being uniformly distributed throughout the high 

dimensional space it actually lies on a lower dimensional non-linear manifold that curves through 

the high dimensional space (Figure 3). This manifold hypothesis seems particularly appropriate for 

single-cell gene expression data as the expression states that a cell can take are highly constrained 

©    2015 Macmillan Publishers Limited. All rights reserved.



6 
 

by an underlying gene regulatory network. A cellular state therefore has relatively few degrees of 

freedom in terms of the states it can immediately progress to, an idea that was formalised in 

Waddington's epigenetic landscape
51

. This landscape can also be expected to be non-linear because 

of complex gene interactions, waves of gene expression and positive and negative feedback loops in 

the gene regulatory network. PCA can be considered as a linear manifold learning algorithm, that 

assumes data lies on a linear hyperplane. 

The aim of a non-linear manifold learning algorithm is to reconstruct the geometry of the low-

dimensional manifold the data lies on from the only information we have: the similarities between 

data points. Key to these algorithms is the idea that it is local distances, similarities between nearby 

points that are important for reconstructing this geometry. 

1. 2.3.1. t-SNE 
t-SNE defines a Gaussian probability distribution over pairs of data points in the high-dimensional 

space, that captures the pairwise similarity of points. The probability of a pair being chosen is high 

if the points are very similar in terms of their high-dimensional gene expression profiles, and very 

close to zero if they are dissimilar. A second distribution over pairs of points in the low dimensional 

embedding is then defined, this time as a Student's t-distribution. Points are placed on the two- or 

three- dimensional plot, and the discrepancy between these two probability distributions (the 

Kullback–Leibler divergence) is iteratively minimised via a gradient descent optimisation method, 

shifting points around until this discrepancy reaches a minimum
48

. 

A disadvantage of t-SNE is that it can be slow to compute. For this reason, a Barnes–Hut 

approximation algorithm has been developed which can scale better to larger data sets
51

. t-SNE has 

been used very successfully to dissect heterogeneity in leukemia samples using single-cell mass 

cytometry data
5
, and to identify an improved cell-sorting strategy for hematopoietic stem cells by 

separating true stem cells from non-stem cells in combined single-cell qPCR and single-cell 

indexed flow cytometry data
6
. 

 

2. 2.3.2. Diffusion maps 
Unlike t-SNE, which tends to pull data apart into separate clusters, diffusion maps tend to organise 

the data into a single continuous manifold and are therefore particularly appropriate when the data 

is sampled from a developmental or differentiation process that we wish to reconstruct (Figure 3). 

The algorithm was first introduced in the context of biology by Haghverdi, Buettner, and Theis, 

adapting it to deal with uncertainties or missing measurement values in qPCR data, and adding 

density normalisation to cope with heterogeneities in data sampling
15,53

. 

Diffusion maps are based upon the idea of reconstructing the global geometry of the data set by 

constructing and iterating a random walk on the data points, and attempt to accurately approximate 

the so-called "diffusion distance" between data points when mapping to a lower-dimensional 

space
49,50

. This diffusion distance is small if there are many high-probability short paths connecting 

the two points, and large if the points are connected only by long paths or low-probability 

transitions. When reducing to a lower-dimensional space, the diffusion algorithm attempts to place 

points with a low diffusion distance nearby in the map. 

The diffusion map algorithm works by constructing a transition matrix on the data, where the 

probability of jumping from one data point to another in one step is high if the two data points are 

similar in the high-dimensional space. If the points are dissimilar, this probability is very close to 

zero. It then employs results from a branch of mathematics known as spectral theory to approximate 

the diffusion distance in lower dimensional space without explicitly iterating the random walk, 

which would be computationally expensive. 

©    2015 Macmillan Publishers Limited. All rights reserved.



7 
 

The diffusion map algorithm is computationally efficient, and, because it integrates over all paths, 

robust to noise, unlike some manifold learning algorithms. For a review of other manifold learning 

approaches, see Lin et al.
54

 

3. 2.3.3. Graph-based representations 
Another way to represent the relationships between single-cell gene expression profiles is as an 

undirected graph, where an edge connecting a pair of profiles indicates that they are similar in the 

high-dimensional space. There are essentially two ways to do this. 

Firstly, a unit distance graph can be constructed, where cells are connected by an edge if they are a 

distance of exactly 1 away from each other
15

. This requires a metric that specifies when a cell 

should be considered a neighbour of another.  A useful notion of neighbour is that the two cells are 

different in the binary expression of exactly one gene. That is, one of the cells expresses the gene 

and the other does not. This representation is particularly useful for gene regulatory network 

reconstruction, which we will discuss in the next section. A disadvantage of this approach is the 

large number of cells which need to be measured in order to construct a connected graph. In order 

for two cells to be connected, we need to have measured any intermediate cellular states. 

A second approach is to construct a k-nearest neighbours graph. Here, each cell is connected to the 

k cells which are most similar to it. This representation requires fewer cells than the state-transition 

graph and retains continuous gene expression levels. However, it fixes all cells to have the same 

number of neighbours. This representation has recently been use to discover subpopulations in 

leukemia samples measured by mass cytometry
55

. 

 
Usually it makes sense to apply a range of different visualisation approaches to a single-cell data set 

and to compare and contrast the results. Reassuringly, there will often be good high-level agreement 

between different methods, but depending on the data, the specific biological processes under study 

and the specific questions the researcher is interested in, one representation may be more 

appropriate. If we are interested in a developmental or differentiation process, a method which 

attempts to reconstruct a developmental time-course, such as a diffusion map or graph 

representation may be best suited. In this case, the next biological question we will usually ask is 

whether we can learn the gene regulatory networks underlying development. We will cover this in 

the next section. 

7. 3. Network reconstruction 
1. 3.1. Statistical relationships between genes  
2. When trying to infer regulatory interactions between genes one of the most obvious things to look 

for is correlation in gene expression levels. If there is a strong correlation between two genes, this 

may indicate that one directly regulates the other. Performing this analysis on all possible pairs and 

selecting strong and statistically significant relationships results in a relevance network, which is an 

undirected graph where edges between genes indicate a potential interaction (Figure 4a). There are 

two types of edge: positive edges where strong positive correlation indicates a potential activation 

and negative edges where strong negative correlation indicates a potential repression
56

. 

3.  

4. The standard Pearson correlation coefficient is a measure of the linear dependence between two 

variables. As genes may not exhibit a linear relationship the Spearman rank correlation is generally 

preferred. Spearman correlation measures how well the relationship between the two variables can 

be fit by a monotonic function. A measure from information theory called mutual information is 

more general still and can capture more complex relationships. 

5.  

6. These statistical relationships are very simple to compute, can scale to huge data sets, and have 
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been successfully applied to find previously unknown regulatory links in single cell data
4
. 

However, relevance networks are undirected and can be very dense, with almost all gene pairs 

showing significant correlation. Partial correlation attempts to address this second issue, by 

calculating correlation after first controlling for the effect of all other genes, and therefore retaining 

the links that are most likely to be direct interactions (Figure 4a). 

7.  

8. To understand another problem, consider two subpopulations, one of which expresses gene A but 

not gene B, the other expresses gene B but not A. Correlation would suggest a very strong negative 

link between the two genes, although there is no strong reason to believe they directly regulate each 

other. One way to address this is to compute the correlation only on cells which coexpress the 

genes of interest
57

. 

9.  

10. Other methods for detecting statistical signals in gene expression data exist. One notable method is 

GENIE3, which constructs random forests of decision trees
58

. GENIE3 was best performer in the 

DREAM5 Network Inference challenge for population data
59

, and has been applied to single-cell 

data
60

. A reweighted mutual information measure known as DREMI, specifically designed for 

single-cell data has recently been introduced
61

. 

11.  

8. 3.2. Learning Bayesian networks 
9. A Bayesian network is a probabilistic model defined by a directed acyclic graph coupled with a 

joint probability distribution
62

. Nodes in the graph correspond to variables in the model (which in 

our case represent genes) and edges indicate direct influence between variables (Figure 5). A 

variable is conditionally independent from variables it is not directly connected to, given the value 

of its parents. The global joint probability distribution for the model can therefore be given by a set 

of much smaller conditional probability tables that give the probability of a variable given the value 

of its parents. Given a Bayesian network, inference can be performed in the model to predict the 

effect of perturbations on the probability distributions of downstream genes. It is the directed 

acyclic graph and conditional independence structure of Bayesian networks which allows efficient 

inference to be performed, and permits efficient learning of models from data. 

10. Bayesian networks were first applied in the context of genomics by Friedman et al.
63

 to infer 

networks from population microarray data. They have since been applied by Sachs et al.
64

 to 

reconstruct signalling networks from single cell flow cytometry data taken from primary human T 

cells. Sachs et al. measured 11 phosphorylated proteins and phospholipids in 5400 individual cells 

spanning nine different conditions. Seven of these conditions directly perturbed variables of the 

network by activating or inhibiting phosphorylation. The differences between these perturbed 

populations were then used to infer causality. Data were first discretised to 3 levels (low, medium 

and high expression), and then learning algorithms were applied to construct a Bayesian network 

which was subsequently successfully validated against existing literature. 

11. One of the key insights of this paper is the need for perturbation data to reconstruct an accurate 

Bayesian network from single cell data. If we have two correlated variables, X and Y, and we find 

that direct inhibition of X affects the value of Y and that direct inhibition of Y does not affect X, we 

can conclude that Y is downstream of X. A learning algorithm can then often determine the 

direction of additional edges downstream of the perturbed variables, even when these edges were 

not directly perturbed. 

12. Bayesian networks are an attractive model class for encoding directed, causal relationships between 

genes, which support efficient structure and parameter learning from data and can naturally cope 

with noise due to their probabilistic interpretation. Bayesian networks have been successfully 

applied to dissect connections between components of signalling pathways. However, they do suffer 

from two drawbacks that limit their application to reconstruction of wider gene regulatory networks. 
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13. Firstly, as concluded by the Sachs study, to infer accurate networks the single cell data needs to be 

coupled with intervention data. Generating such intervention data is very time consuming and often 

impractical, and cannot be done without disturbing the wild-type system that we are supposed to be 

studying. Secondly, Bayesian networks are acyclic, and have no feedback. Feedback is a crucial 

component of gene regulatory networks. 

14. 3.3. Synthesising executable gene regulatory networks 
15. We recently introduced a method for reconstructing mechanistic models of gene regulatory 

networks directly from single cell gene expression data
15,65

. This method, the Single Cell Network 

Synthesis toolkit, is based on constructing a state transition graph from the data, and then finding a 

model which matches this graph.  

16. A state transition graph is a unit distance graph, where nodes correspond to measured cell states, 

and edges between states are changes in single genes. We view this graph as a branching time 

course reconstructed from the single-cell snapshot measurements, where each edge is a potential 

transition between individual cellular states. We then ask for a model with a set of rules that allow 

us to walk via a series of single-gene changes from the earliest cell states in the graph (e.g. stem 

cells or cells measured on day 1 of a differentiation time course) to the latest cell states 

(differentiated cells). The resulting network models this differentiation journey. 

17. The synthesis method results in an asynchronous Boolean network, which is a mechanistic model 

that can be directly executed on a computer and used to make predictions. Each gene is given a 

Boolean rule that specifies how its on/off expression value changes over time due to regulation by 

other genes in the network. The reconstructed networks are directed and can have cycles with 

feedback and auto-regulation, and mechanistic logic (Figure 4b). 

18. Once a matching model has been found, analysis can be performed to find the stable states of the 

model, which may correspond to mature, differentiated cell types. In-silico over-expression or 

knock outs can then be introduced to assess their effect on the model's behaviour. 

We applied the SCNS toolkit to study early blood development in the mouse embryo, using single-

cell qRT-PCR analysis of 33 transcription factors and additional marker genes in 3934 cells with 

blood-forming potential captured at four sequential time points between embryonic day 7.0 and day 

8.5. Several novel predictions from the model about the role of Hox and Sox factors in blood 

development were validated experimentally (data shown in Figure 2b, resulting network in Figure 

4b). 

19. Synthesis approaches generally lead to combinatorial rather than statistical problems, which are 

then exactly solved using algorithms which leverage highly optimised specialist solvers
66

. Synthesis 

yields a globally-optimal model which satisfies the specification given by the data completely, or 

otherwise informs the user that no such model exists. We can also use synthesis to find all models 

that satisfy a given set of model specifications. Experiments can then be designed which distinguish 

between these different possibilities. The major disadvantages of the approach are the need for a 

very large number of cells (thousands rather than hundreds) in order to construct a connected state 

transition graph, and the restriction to only binary, rather than continuous, gene expression levels. 

20. Concluding remarks 
21. The field of single-cell genomics is still relatively young, and there is a sparsity of high-quality data 

sets with a large number of cells. This is set to change as adoption of these protocols becomes more 

widespread. New single-cell studies will give us insights into organ development and human 

disease. A larger number of data sets will allow comprehensive comparison of the techniques 

covered in this review and allow assessment of the advantages and disadvantages of different 

approaches and improvement of the methods. 

 
The move towards whole-transcriptome RNA-sequencing data removes the selection bias of qPCR 

©    2015 Macmillan Publishers Limited. All rights reserved.
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data and allows analysis of the full genetic program of the cell but presents its own challenges. 

RNA-sequencing will also allow the impact of genetic variation in cancer upon gene expression to 

be assessed. Finally, new, emerging methods may allow spatial information to be incorporated into 

whole-transcriptome studies of gene expression
67,68

. 
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FIGURE LEGENDS 

 

Figure 1: Overview of the different analyses covered in this review. 

 

Figure 2: High-dimensional data can be hard to visualise. A. The classic Iris flower dataset has four 

dimensions, measured in three different species. As this is a low-dimensional dataset, we can 

directly plot it to try to undercover structure. Here we are plotting sepal length against petal width 

and petal length. B. Hierarchical clustering of a high-dimensional single-cell qPCR dataset with 40 

genes and 3934 cells
15

. Rows represent genes and columns represent cells. Left-hand side colour bar 

shows measured ΔCt level of expression of genes. Top colour bar shows cell types - blood cell 

progenitors (red) fall into one large cluster while other cell types separate into two more large 

clusters and do not separate by cell type. 

 

Figure 3: Manifold learning.  A. A two-dimensional curving manifold embedded in three 

dimensions. B. Diffusion map applied to “unfold” the manifold to a rectangle, giving one possible 

way of representing the three-dimensional data in two dimensions. C. t-SNE separates bone marrow 

cells measured by cytometry into different immune cell types
5
. Points are coloured by CD20 

expression, a B-cell cell-surface lineage marker. D. PCA, a linear projection method, fails to 

separate between the different immune subtypes on the first two principal components. 

 

Figure 4: A. Relevance network obtained for early blood development from partial correlation 

analysis
15

. Green: activation; red: repression. Data used to reconstruct network shown in Figure 1a. 

B. Asynchronous Boolean network obtained from same data set using the SCNS toolkit. 

 

Figure 5: Bayesian network for T cell signalling
64

. 
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