17,016 research outputs found

    Passive cascaded-lattice structures for low-sensitivity FIR filter design, with applications to filter banks

    Get PDF
    A class of nonrecursive cascaded-lattice structures is derived, for the implementation of finite-impulse response (FIR) digital filters. The building blocks are lossless and the transfer function can be implemented as a sequence of planar rotations. The structures can be used for the synthesis of any scalar FIR transfer function H(z) with no restriction on the location of zeros; at the same time, all the lattice coefficients have magnitude bounded above by unity. The structures have excellent passband sensitivity because of inherent passivity, and are automatically internally scaled, in an L_2 sense. The ideas are also extended for the realization of a bank of MFIR transfer functions as a cascaded lattice. Applications of these structures in subband coding and in multirate signal processing are outlined. Numerical design examples are included

    The discrete-time bounded-real lemma in digital filtering

    Get PDF
    The Lossless Bounded-Real lemma is developed in the discrete-time domain, based only on energy balance arguments. The results are used to prove a discrete-time version of the general Bounded-Real lemma, based on a matrix spectral-factorization result that permits a transfer matrix embedding process. Some applications of the results in digital filter theory are finally outlined

    Low passband sensitivity digital filters: A generalized viewpoint and synthesis procedures

    Get PDF
    The concepts of losslessness and maximum available power are basic to the low-sensitivity properties of doubly terminated lossless networks of the continuous-time domain. Based on similar concepts, we develop a new theory for low-sensitivity discrete-time filter structures. The mathematical setup for the development is the bounded-real property of transfer functions and matrices. Starting from this property, we derive procedures for the synthesis of any stable digital filter transfer function by means of a low-sensitivity structure. Most of the structures generated by this approach are interconnections of a basic building block called digital "two-pair," and each two-pair is characterized by a lossless bounded-real (LBR) transfer matrix. The theory and synthesis procedures also cover special cases such as wave digital filters, which are derived from continuous-time networks, and digital lattice structures, which are closely related to unit elements of distributed network theory

    A new approach to the realization of low-sensitivity IIR digital filters

    Get PDF
    A new implementation of an IIR digital filter transfer function is presented that is structurally passive and, hence, has extremely low pass-band sensitivity. The structure is based on a simple parallel interconnection of two all-pass sections, with each section implemented in a structurally lossless manner. The structure shares a number of properties in common with wave lattice digital filters. Computer simulation results verifying the low-sensitivity feature are included, along with results on roundoff noise/dynamic range interaction. A large number of alternatives is available for the implementation of the all-pass sections, giving rise to the well-known wave lattice digital filters as a specific instance of the implementation

    Design of doubly-complementary IIR digital filters using a single complex allpass filter, with multirate applications

    Get PDF
    It is shown that a large class of real-coefficient doubly-complementary IIR transfer function pairs can be implemented by means of a single complex allpass filter. For a real input sequence, the real part of the output sequence corresponds to the output of one of the transfer functions G(z) (for example, lowpass), whereas the imaginary part of the output sequence corresponds to its "complementary" filter H(z)(for example, highpass). The resulting implementation is structurally lossless, and hence the implementations of G(z) and H(z) have very low passband sensitivity. Numerical design examples are included, and a typical numerical example shows that the new implementation with 4 bits per multiplier is considerably better than a direct form implementation with 9 bits per multiplier. Multirate filter bank applications (quadrature mirror filtering) are outlined

    The role of lossless systems in modern digital signal processing: a tutorial

    Get PDF
    A self-contained discussion of discrete-time lossless systems and their properties and relevance in digital signal processing is presented. The basic concept of losslessness is introduced, and several algebraic properties of lossless systems are studied. An understanding of these properties is crucial in order to exploit the rich usefulness of lossless systems in digital signal processing. Since lossless systems typically have many input and output terminals, a brief review of multiinput multioutput systems is included. The most general form of a rational lossless transfer matrix is presented along with synthesis procedures for the FIR (finite impulse response) case. Some applications of lossless systems in signal processing are presented

    The doubly terminated lossless digital two-pair in digital filtering

    Get PDF
    A digital lossless two-pair terminated at both ends with "passive" multipliers is studied. Conditions for low sensitivity of the transfer-function magnitude with respect to the digital multiplier coefficients are derived. It is shown that low sensitivity property can be achieved by forcing certain "matching" conditions, at the terminations. The application of these results to the understanding of some well-known digital filter structures is outlined. In particular, it is shown that the coupled-form biquad can be interpreted as a doubly terminated lossless digital two pair, and that it satisfies the "termination matching conditions" for almost all pole locations. All results derived in the paper are based on independentz-domain arguments

    Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfect-reconstruction property

    Get PDF
    Based on the concept of losslessness in digital filter structures, this paper derives a general class of maximally decimated M-channel quadrature mirror filter banks that lead to perfect reconstruction. The perfect-reconstruction property guarantees that the reconstructed signalhat{x} (n)is a delayed version of the input signal x (n), i.e.,hat{x} (n) = x (n - n_{0}). It is shown that such a property can be satisfied if the alias component matrix (AC matrix for short) is unitary on the unit circle of the z plane. The number of channels M is arbitrary, and when M is two, the results reduce to certain recently reported 2-channel perfect-reconstruction QMF structures. A procedure, based on recently reported FIR cascaded-lattice structures, is presented for optimal design of such FIR M-channel filter banks. Design examples are included

    Circulant and skew-circulant matrices as new normal-form realization of IIR digital filters

    Get PDF
    Normal-form fixed-point state-space realization of IIR (infinite-impulse response) filters are known to be free from both overflow oscillations and roundoff limit cycles, provided magnitude truncation arithmetic is used together with two's-complement overflow features. Two normal-form realizations are derived that utilize circulant and skew-circulant matrices as their state transition matrices. The advantage of these realizations is that the A-matrix has only N (rather than N2) distinct elements and is amenable to efficient memory-oriented implementation. The problem of scaling the internal signals in these structures is addressed, and it is shown that an approximate solution can be obtained through a numerical optimization method. Several numerical examples are included

    All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

    Get PDF
    A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0), controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev filters of the first and of the second kind, and also Legendre and Butterworth filters are shown to be special cases of these allpole recursive digital filters. Closed form equations for the computation of the filter coefficients are provided. The design technique is illustrated with examples
    corecore