81,735 research outputs found

    The Chameleon project in retrospective

    Get PDF
    In this paper we describe in retrospective the main results of a four year project, called Chameleon. As part of this project we developed a coarse-grained reconfigurable core for DSP algorithms in wireless devices denoted MONTIUM. After presenting the main achievements within this project we present the lessons learned from this project

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Ge Nanowires Anode sheathed with Amorphous Carbon for Rechargeable Lithium batteries

    Get PDF
    Interdisciplinary School of Green EnergyThe composite electrode composed of single crystalline Ge NWs sheathed with amorphous carbon showed excellent electrochemical properties of large reversible capacity, high coulombic efficiency, excellent rate capability and stable cycle performance. c-Ge NWs synthesized by using thermal decomposition of C2H2 gas at 700 °C under Ar atmosphere after SLS (solution-liquid-solid) growth were found to have good performance during cycling with Li. The rate capability for charging was shown reversible capacity of 963 mAh/g with a coulombic efficiency of 90% and 700 mAh/g at the rate of 6C (= 4800mA/g). Capacity retention after 100 cycles was 72% at the rate of 0.5C. The improved electrochemical performance of c-Ge-NWs fabricated in our experiment was attributed to the formation of amorphous Ge NWs during cycling and a homogenous carbon coating on Ge NWs. Thus, these results suggest that the use of nanowires structure can be promising for alloy anode materials in lithium ion batteries
    corecore