5,201 research outputs found

    Harnessing AI for Speech Reconstruction using Multi-view Silent Video Feed

    Full text link
    Speechreading or lipreading is the technique of understanding and getting phonetic features from a speaker's visual features such as movement of lips, face, teeth and tongue. It has a wide range of multimedia applications such as in surveillance, Internet telephony, and as an aid to a person with hearing impairments. However, most of the work in speechreading has been limited to text generation from silent videos. Recently, research has started venturing into generating (audio) speech from silent video sequences but there have been no developments thus far in dealing with divergent views and poses of a speaker. Thus although, we have multiple camera feeds for the speech of a user, but we have failed in using these multiple video feeds for dealing with the different poses. To this end, this paper presents the world's first ever multi-view speech reading and reconstruction system. This work encompasses the boundaries of multimedia research by putting forth a model which leverages silent video feeds from multiple cameras recording the same subject to generate intelligent speech for a speaker. Initial results confirm the usefulness of exploiting multiple camera views in building an efficient speech reading and reconstruction system. It further shows the optimal placement of cameras which would lead to the maximum intelligibility of speech. Next, it lays out various innovative applications for the proposed system focusing on its potential prodigious impact in not just security arena but in many other multimedia analytics problems.Comment: 2018 ACM Multimedia Conference (MM '18), October 22--26, 2018, Seoul, Republic of Kore

    Final Report to NSF of the Standards for Facial Animation Workshop

    Get PDF
    The human face is an important and complex communication channel. It is a very familiar and sensitive object of human perception. The facial animation field has increased greatly in the past few years as fast computer graphics workstations have made the modeling and real-time animation of hundreds of thousands of polygons affordable and almost commonplace. Many applications have been developed such as teleconferencing, surgery, information assistance systems, games, and entertainment. To solve these different problems, different approaches for both animation control and modeling have been developed

    RenderMe-360: A Large Digital Asset Library and Benchmarks Towards High-fidelity Head Avatars

    Full text link
    Synthesizing high-fidelity head avatars is a central problem for computer vision and graphics. While head avatar synthesis algorithms have advanced rapidly, the best ones still face great obstacles in real-world scenarios. One of the vital causes is inadequate datasets -- 1) current public datasets can only support researchers to explore high-fidelity head avatars in one or two task directions; 2) these datasets usually contain digital head assets with limited data volume, and narrow distribution over different attributes. In this paper, we present RenderMe-360, a comprehensive 4D human head dataset to drive advance in head avatar research. It contains massive data assets, with 243+ million complete head frames, and over 800k video sequences from 500 different identities captured by synchronized multi-view cameras at 30 FPS. It is a large-scale digital library for head avatars with three key attributes: 1) High Fidelity: all subjects are captured by 60 synchronized, high-resolution 2K cameras in 360 degrees. 2) High Diversity: The collected subjects vary from different ages, eras, ethnicities, and cultures, providing abundant materials with distinctive styles in appearance and geometry. Moreover, each subject is asked to perform various motions, such as expressions and head rotations, which further extend the richness of assets. 3) Rich Annotations: we provide annotations with different granularities: cameras' parameters, matting, scan, 2D/3D facial landmarks, FLAME fitting, and text description. Based on the dataset, we build a comprehensive benchmark for head avatar research, with 16 state-of-the-art methods performed on five main tasks: novel view synthesis, novel expression synthesis, hair rendering, hair editing, and talking head generation. Our experiments uncover the strengths and weaknesses of current methods. RenderMe-360 opens the door for future exploration in head avatars.Comment: Technical Report; Project Page: 36; Github Link: https://github.com/RenderMe-360/RenderMe-36

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    Analysis and Construction of Engaging Facial Forms and Expressions: Interdisciplinary Approaches from Art, Anatomy, Engineering, Cultural Studies, and Psychology

    Get PDF
    The topic of this dissertation is the anatomical, psychological, and cultural examination of a human face in order to effectively construct an anatomy-driven 3D virtual face customization and action model. In order to gain a broad perspective of all aspects of a face, theories and methodology from the fields of art, engineering, anatomy, psychology, and cultural studies have been analyzed and implemented. The computer generated facial customization and action model were designed based on the collected data. Using this customization system, culturally-specific attractive face in Korean popular culture, “kot-mi-nam (flower-like beautiful guy),” was modeled and analyzed as a case study. The “kot-mi-nam” phenomenon is overviewed in textual, visual, and contextual aspects, which reveals the gender- and sexuality-fluidity of its masculinity. The analysis and the actual development of the model organically co-construct each other requiring an interwoven process. Chapter 1 introduces anatomical studies of a human face, psychological theories of face recognition and an attractive face, and state-of-the-art face construction projects in the various fields. Chapter 2 and 3 present the Bezier curve-based 3D facial customization (BCFC) and Multi-layered Facial Action Model (MFAF) based on the analysis of human anatomy, to achieve a cost-effective yet realistic quality of facial animation without using 3D scanned data. In the experiments, results for the facial customization for gender, race, fat, and age showed that BCFC achieved enhanced performance of 25.20% compared to existing program Facegen , and 44.12% compared to Facial Studio. The experimental results also proved the realistic quality and effectiveness of MFAM compared with blend shape technique by enhancing 2.87% and 0.03% of facial area for happiness and anger expressions per second, respectively. In Chapter 4, according to the analysis based on BCFC, the 3D face of an average kot-mi-nam is close to gender neutral (male: 50.38%, female: 49.62%), and Caucasian (66.42-66.40%). Culturally-specific images can be misinterpreted in different cultures, due to their different languages, histories, and contexts. This research demonstrates that facial images can be affected by the cultural tastes of the makers and can also be interpreted differently by viewers in different cultures

    Deep Person Generation: A Survey from the Perspective of Face, Pose and Cloth Synthesis

    Full text link
    Deep person generation has attracted extensive research attention due to its wide applications in virtual agents, video conferencing, online shopping and art/movie production. With the advancement of deep learning, visual appearances (face, pose, cloth) of a person image can be easily generated or manipulated on demand. In this survey, we first summarize the scope of person generation, and then systematically review recent progress and technical trends in deep person generation, covering three major tasks: talking-head generation (face), pose-guided person generation (pose) and garment-oriented person generation (cloth). More than two hundred papers are covered for a thorough overview, and the milestone works are highlighted to witness the major technical breakthrough. Based on these fundamental tasks, a number of applications are investigated, e.g., virtual fitting, digital human, generative data augmentation. We hope this survey could shed some light on the future prospects of deep person generation, and provide a helpful foundation for full applications towards digital human
    corecore