15,190 research outputs found
Experimental investigation on synthesis, characterization, stability, thermo-physical properties and rheological behavior of MWCNTs-kapok seed oil based nanofluid
Several researchers devoted their efforts for the thermal conductivity enhancement of Carbon Nanotubes (CNTs) based nanofluids as CNTs have excellent thermal properties. However, limited research is reported on the detailed thermo-physical properties of CNTs and oil based nanofluids. In this work, the one-step method synthesis of a new MWCNTs-Kapok seed oil based nanofluid at constant nanoparticle concentration (0.1 wt./wt.) is reported. The nanofluid is characterized by FESEM, FTIR, visual stability analysis and thermophysical properties are experimentally measured. The viscosity found in the range of (0.049–10.101¿Pa·s), the thermal conductivity of (0.165–0.207¿W/m·K) and enhancement of thermal conductivity (6.1538%) were observed. Moreover, the viscosity decreases, and thermal conductivity increases with an increase in temperature. The experimentally obtained data are found in agreement with existing models and modified correlations. The rheological behavior showed that nanofluid is non-Newtonian in nature and exhibiting shear thinning or pseudo plastic behavior.Preprin
The effects of surface modifications of multiwalled carbon nanotubes on their dispersibility in different solvents and poly(ether ether ketone)
The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on their dispersibility in different solvents and poly (ether ether ketone) (PEEK) have been studied. MWCNTs were treated by mixed acids to obtain acid-functionalized MWCNTs. The acid-functionalized MWCNTs were modified with different chemical agents separately, such as 1,6-diaminohexane, hexadecyl trimethyl ammonium bromide, silane coupling agent 3-aminopropyltriethoxysilane, anhydrous sulfanilic acid and ethanolamine. MWCNT/PEEK composite films were fabricated in order to explore systematically the dispersibility of differently modified MWCNTs PEEK as well as in different solvents. The morphology and structures of MWCNTs and the compatibility between MWCNTs and PEEK have been investigated. It was observed that the MWCNTs modified with anhydrous sulfanilic acid have an excellent dispersion in the PEEK grafted by sulfonic acid groups and that the MWCNTs modified with ethanolamine are also dispersed well in pure PEEK. The results herein provide useful insights into the development of MWCNT/PEEK composites for a wide variety of applications.Peer reviewe
Preparation-microstructure-property relationships in double-walled carbon nanotubes/alumina composites
Double-walled carbon nanotube/alumina composite powders with low carbon contents (2– 3 wt.%) are prepared using three different methods and densified by spark plasma sintering. The mechanical properties and electrical conductivity are investigated and correlated with the microstructure of the dense materials. Samples prepared by in situ synthesis of carbon nanotubes (CNTs) in impregnated submicronic alumina are highly homogeneous and present the higher electrical conductivity (2.2–3.5 Scm-1) but carbon films at grain boundaries induce a poor cohesion of the materials. Composites prepared by mixing using moderate sonication of as-prepared double-walled CNTs and lyophilisation, with little damage to the CNTs, have a fracture strength higher (+30%) and a fracture toughness similar (5.6 vs 5.4 MPa m1/2) to alumina with a similar submicronic grain size. This is correlated with crack-bridging by CNTs on a large scale, despite a lack of homogeneity of the CNT distribution
Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells
Recent findings in nanomedicine have revealed that carbon nanotubes (CNTs) can be used as potential drug carriers, therapeutic agents and diagnostics tools. Moreover, due to their ability to cross cellular membranes, their nanosize dimension, high surface area and relatively good biocompatibility, CNTs have also been employed as a novel gene delivery vector system. In our previous work, we functionalized CNTs with two polyamine polymers, polyethyleneimine (PEI) and polyamidoamine dendrimer (PAMAM). These compounds have low cytotoxicity, ability to conjugate microRNAs (such as miR-503) and, at the same time, transfect efficiently endothelial cells. The parameters contributing to the good efficiency of transfection that we observed were not investigated in detail. In fact, the diameter and length of CNTs are important parameters to be taken into account when evaluating the effects on drug delivery efficiency. In order to investigate the biophysical and biological contributions of polymer-coated CNTs in delivery of miRNAs to human cells, we decided to investigate three different preparations, characterized by different dimensions and aspect ratios. In particular, we took into account very small CNTs, a suspension of CNTs starting from the commercial product and a 2D material based on CNTs (ie, buckypapers [BPs]) to examine the transfection efficiency of a rigid scaffold. In conclusion, we extensively investigated the biophysical and biological contributions of polyamine-coated CNTs and bidimensional BPs in the delivery of miRNAs to human cells, in order to optimize the transfection efficiency of these compounds to be employed as efficient drug delivery vectors in biomedical applications
Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns
Knowledge of the fate and transport of functionalized carbon nanotubes (CNTs) in porous media is crucial to understand their environmental impacts. In this study, laboratory column and modeling experiments were conducted to mechanistically compare the retention and transport of two types of functionalized CNTs (i.e., single-walled nanotubes and multi-walled nanotubes) in acid-cleaned, baked, and natural sand under unfavorable conditions. The CNTs were highly mobile in the acid-cleaned sand columns but showed little transport in the both natural and baked sand columns. In addition, the retention of the CNTs in the both baked and natural sand was strong and almost irreversible even after reverse, high-velocity, or surfactant flow flushing. Both experimental and modeling results showed that pH is one of the factors dominating CNT retention and transport in natural and baked sand. Retention of the functionalized CNTs in the natural and baked sand columns reduced dramatically when the system pH increased. Our results suggest that the retention and transport of the functionalized CNTs in natural sand porous media were mainly controlled by strong surface deposition through the electrostatic and/or hydrogen-bonding attractions between surface function groups of the CNTs and metal oxyhydroxide impurities on the sand surfaces
Super-Hydrophobic Multi-Walled Carbon Nanotube Coatings for Stainless Steel
We have taken advantage of the native surface roughness and the iron content
of AISI 316 stainless steel to direct grow multi-walled carbon nanotube (MWCNT)
random networks by chemical vapor deposition (CVD) at low-temperature (C), without the addition of any external catalysts or
time-consuming pre-treatments. In this way, super-hydrophobic MWCNT films on
stainless steel sheets were obtained, exhibiting high contact angle values
() and high adhesion force (high contact angle hysteresis).
Furthermore, the investigation of MWCNT films at scanning electron microscopy
(SEM) reveals a two-fold hierarchical morphology of the MWCNT random networks
made of hydrophilic carbonaceous nanostructures on the tip of hydrophobic
MWCNTs. Owing to the Salvinia effect, the hydrophobic and hydrophilic composite
surface of the MWCNT films supplies a stationary super-hydrophobic coating for
conductive stainless steel. This biomimetical inspired surface not only may
prevent corrosion and fouling but also could provide low-friction and
drag-reduction.Comment: 6 pages, 3 figure
- …
