120,538 research outputs found

    The syntax of DRAGOON: Evaluation and recommendations

    Get PDF
    Several different ways to add linguistic support for object-oriented programming to the Ada programming language have been proposed and developed in recent years. The Distributable Reusable Ada Generated from an Object-Oriented Notation (DRAGOON) language is one such Ada extension. The DRAGOON syntax is described for classes, objects, and inheritance, and the syntax is evaluated against the following five criteria: readability, writeability, lack of ambiguity, ease of translation, and consistency with existing Ada syntax. The evaluation reveals several deficiencies in the notation. A revised syntax that corrects these deficiencies is proposed

    Relating Nominal and Higher-order Abstract Syntax Specifications

    Full text link
    Nominal abstract syntax and higher-order abstract syntax provide a means for describing binding structure which is higher-level than traditional techniques. These approaches have spawned two different communities which have developed along similar lines but with subtle differences that make them difficult to relate. The nominal abstract syntax community has devices like names, freshness, name-abstractions with variable capture, and the new-quantifier, whereas the higher-order abstract syntax community has devices like lambda-binders, lambda-conversion, raising, and the nabla-quantifier. This paper aims to unify these communities and provide a concrete correspondence between their different devices. In particular, we develop a semantics-preserving translation from alpha-Prolog, a nominal abstract syntax based logic programming language, to G-, a higher-order abstract syntax based logic programming language. We also discuss higher-order judgments, a common and powerful tool for specifications with higher-order abstract syntax, and we show how these can be incorporated into G-. This establishes G- as a language with the power of higher-order abstract syntax, the fine-grained variable control of nominal specifications, and the desirable properties of higher-order judgments.Comment: To appear in PPDP 201

    Syntax-directed documentation for PL360

    Get PDF
    PL360 is a phrase-structured programming language which provides the facilities of a symbolic machine language for the IBM 360 computers. An automatic process, syntax-directed documentation, is described which acquires programming documentation through the syntactical analysis of a program, followed by the interrogation of the originating programmer. This documentation can be dispensed through reports of file query replies when other programmers later need to know the program structure and its details. A key principle of the programming documentation process is that it is managed solely on the basis of the syntax of programs
    corecore