1,617 research outputs found

    On existential declarations of independence in IF Logic

    Full text link
    We analyze the behaviour of declarations of independence between existential quantifiers in quantifier prefixes of IF sentences; we give a syntactical criterion for deciding whether a sentence beginning with such prefix exists such that its truth values may be affected by removal of the declaration of independence. We extend the result also to equilibrium semantics values for undetermined IF sentences. The main theorem allows us to describe the behaviour of various particular classes of quantifier prefixes, and to prove as a remarkable corollary that all existential IF sentences are equivalent to first-order sentences. As a further consequence, we prove that the fragment of IF sentences with knowledge memory has only first-order expressive power (up to truth equivalence)

    Topological Representation of Geometric Theories

    Full text link
    Using Butz and Moerdijk's topological groupoid representation of a topos with enough points, a `syntax-semantics' duality for geometric theories is constructed. The emphasis is on a logical presentation, starting with a description of the semantical topological groupoid of models and isomorphisms of a theory and a direct proof that this groupoid represents its classifying topos. Using this representation, a contravariant adjunction is constructed between theories and topological groupoids. The restriction of this adjunction yields a contravariant equivalence between theories with enough models and semantical groupoids. Technically a variant of the syntax-semantics duality constructed in [Awodey and Forssell, arXiv:1008.3145v1] for first-order logic, the construction here works for arbitrary geometric theories and uses a slice construction on the side of groupoids---reflecting the use of `indexed' models in the representation theorem---which in several respects simplifies the construction and allows for an intrinsic characterization of the semantic side.Comment: 32 pages. This is the first pre-print version, the final revised version can be found at http://onlinelibrary.wiley.com/doi/10.1002/malq.201100080/abstract (posting of which is not allowed by Wiley). Changes in v2: updated comment

    Logic Programming as Constructivism

    Get PDF
    The features of logic programming that seem unconventional from the viewpoint of classical logic can be explained in terms of constructivistic logic. We motivate and propose a constructivistic proof theory of non-Horn logic programming. Then, we apply this formalization for establishing results of practical interest. First, we show that 'stratification can be motivated in a simple and intuitive way. Relying on similar motivations, we introduce the larger classes of 'loosely stratified' and 'constructively consistent' programs. Second, we give a formal basis for introducing quantifiers into queries and logic programs by defining 'constructively domain independent* formulas. Third, we extend the Generalized Magic Sets procedure to loosely stratified and constructively consistent programs, by relying on a 'conditional fixpoini procedure

    First-Order Logical Duality

    Get PDF
    From a logical point of view, Stone duality for Boolean algebras relates theories in classical propositional logic and their collections of models. The theories can be seen as presentations of Boolean algebras, and the collections of models can be topologized in such a way that the theory can be recovered from its space of models. The situation can be cast as a formal duality relating two categories of syntax and semantics, mediated by homming into a common dualizing object, in this case 2. In the present work, we generalize the entire arrangement from propositional to first-order logic. Boolean algebras are replaced by Boolean categories presented by theories in first-order logic, and spaces of models are replaced by topological groupoids of models and their isomorphisms. A duality between the resulting categories of syntax and semantics, expressed first in the form of a contravariant adjunction, is established by homming into a common dualizing object, now \Sets, regarded once as a boolean category, and once as a groupoid equipped with an intrinsic topology. The overall framework of our investigation is provided by topos theory. Direct proofs of the main results are given, but the specialist will recognize toposophical ideas in the background. Indeed, the duality between syntax and semantics is really a manifestation of that between algebra and geometry in the two directions of the geometric morphisms that lurk behind our formal theory. Along the way, we construct the classifying topos of a decidable coherent theory out of its groupoid of models via a simplified covering theorem for coherent toposes.Comment: Final pre-print version. 62 page

    Logic in the Tractatus

    Get PDF
    I present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named. There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is countably infinite, then the property of being a tautology is \Pi^1_1-complete. But third, it is only granted the assumption of countability that the class of tautologies is \Sigma_1-definable in set theory. Wittgenstein famously urges that logical relationships must show themselves in the structure of signs. He also urges that the size of the universe cannot be prejudged. The results of this paper indicate that there is no single way in which logical relationships could be held to make themselves manifest in signs, which does not prejudge the number of objects

    Conditionals and modularity in general logics

    Full text link
    In this work in progress, we discuss independence and interpolation and related topics for classical, modal, and non-monotonic logics
    • 

    corecore