5 research outputs found

    Syntactic Complexity of Circular Semi-Flower Automata

    Full text link
    We investigate the syntactic complexity of certain types of finitely generated submonoids of a free monoid. In fact, we consider those submonoids which are accepted by circular semi-flower automata (CSFA). Here, we show that the syntactic complexity of CSFA with at most one `branch point going in' (bpi) is linear. Further, we prove that the syntactic complexity of nn-state CSFA with two bpis over a binary alphabet is 2n(n+1)2n(n+1)

    Syntactic Complexity of Ultimately Periodic Sets of Integers

    No full text

    Syntactic complexity of ultimately periodic sets of integers

    Full text link
    We compute the cardinality of the syntactic monoid of the language 0^∗rep_b(mN) made of base b expansions of the multiples of the integer m. We also give lower bounds for the syntactic complexity of any (ultimately) periodic set of integers written in base b. We apply our results to some well studied problem: decide whether or not a b-recognizable sets of integers is ultimately periodic

    Syntactic complexity of ultimately periodic sets of integers

    Full text link
    We compute the cardinality of the syntactic monoid of the language 0^∗rep_b(mN) made of base b expansions of the multiples of the integer m. We also give lower bounds for the syntactic complexity of any (ultimately) periodic set of integers written in base b. We apply our results to some well studied problem: decide whether or not a b-recognizable sets of integers is ultimately periodic

    Syntactic complexity of ultimately periodic sets of integers and application to a decision procedure

    Full text link
    We compute the cardinality of the syntactic monoid of the language 0* rep_b(mN) made of base b expansions of the multiples of the integer m. We also give lower bounds for the syntactic complexity of any (ultimately) periodic set of integers written in base b. We apply our results to a well studied problem: decide whether or not a b-recognizable set of integers is ultimately periodic
    corecore