21,061 research outputs found

    Using Indexed and Synchronous Events to Model and Validate Cyber-Physical Systems

    Full text link
    Timed Transition Models (TTMs) are event-based descriptions for modelling, specifying, and verifying discrete real-time systems. An event can be spontaneous, fair, or timed with specified bounds. TTMs have a textual syntax, an operational semantics, and an automated tool supporting linear-time temporal logic. We extend TTMs and its tool with two novel modelling features for writing high-level specifications: indexed events and synchronous events. Indexed events allow for concise description of behaviour common to a set of actors. The indexing construct allows us to select a specific actor and to specify a temporal property for that actor. We use indexed events to validate the requirements of a train control system. Synchronous events allow developers to decompose simultaneous state updates into actions of separate events. To specify the intended data flow among synchronized actions, we use primed variables to reference the post-state (i.e., one resulted from taking the synchronized actions). The TTM tool automatically infers the data flow from synchronous events, and reports errors on inconsistencies due to circular data flow. We use synchronous events to validate part of the requirements of a nuclear shutdown system. In both case studies, we show how the new notation facilitates the formal validation of system requirements, and use the TTM tool to verify safety, liveness, and real-time properties.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    Jeeg: Temporal Constraints for the Synchronization of Concurrent Objects

    No full text
    We introduce Jeeg, a dialect of Java based on a declarative replacement of the synchronization mechanisms of Java that results in a complete decoupling of the 'business' and the 'synchronization' code of classes. Synchronization constraints in Jeeg are expressed in a linear temporal logic which allows to effectively limit the occurrence of the inheritance anomaly that commonly affects concurrent object oriented languages. Jeeg is inspired by the current trend in aspect oriented languages. In a Jeeg program the sequential and concurrent aspects of object behaviors are decoupled: specified separately by the programmer these are then weaved together by the Jeeg compiler

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Two-Variable Logic with Two Order Relations

    Full text link
    It is shown that the finite satisfiability problem for two-variable logic over structures with one total preorder relation, its induced successor relation, one linear order relation and some further unary relations is EXPSPACE-complete. Actually, EXPSPACE-completeness already holds for structures that do not include the induced successor relation. As a special case, the EXPSPACE upper bound applies to two-variable logic over structures with two linear orders. A further consequence is that satisfiability of two-variable logic over data words with a linear order on positions and a linear order and successor relation on the data is decidable in EXPSPACE. As a complementing result, it is shown that over structures with two total preorder relations as well as over structures with one total preorder and two linear order relations, the finite satisfiability problem for two-variable logic is undecidable

    Qualitative Analysis of POMDPs with Temporal Logic Specifications for Robotics Applications

    Get PDF
    We consider partially observable Markov decision processes (POMDPs), that are a standard framework for robotics applications to model uncertainties present in the real world, with temporal logic specifications. All temporal logic specifications in linear-time temporal logic (LTL) can be expressed as parity objectives. We study the qualitative analysis problem for POMDPs with parity objectives that asks whether there is a controller (policy) to ensure that the objective holds with probability 1 (almost-surely). While the qualitative analysis of POMDPs with parity objectives is undecidable, recent results show that when restricted to finite-memory policies the problem is EXPTIME-complete. While the problem is intractable in theory, we present a practical approach to solve the qualitative analysis problem. We designed several heuristics to deal with the exponential complexity, and have used our implementation on a number of well-known POMDP examples for robotics applications. Our results provide the first practical approach to solve the qualitative analysis of robot motion planning with LTL properties in the presence of uncertainty

    Cooperative Decentralized Multi-agent Control under Local LTL Tasks and Connectivity Constraints

    Full text link
    We propose a framework for the decentralized control of a team of agents that are assigned local tasks expressed as Linear Temporal Logic (LTL) formulas. Each local LTL task specification captures both the requirements on the respective agent's behavior and the requests for the other agents' collaborations needed to accomplish the task. Furthermore, the agents are subject to communication constraints. The presented solution follows the automata-theoretic approach to LTL model checking, however, it avoids the computationally demanding construction of synchronized product system between the agents. We suggest a decentralized coordination among the agents through a dynamic leader-follower scheme, to guarantee the low-level connectivity maintenance at all times and a progress towards the satisfaction of the leader's task. By a systematic leader switching, we ensure that each agent's task will be accomplished.Comment: full version of CDC 2014 submissio
    corecore