4,420 research outputs found

    Building Computing-As-A-Service Mobile Cloud System

    Get PDF
    The last five years have witnessed the proliferation of smart mobile devices, the explosion of various mobile applications and the rapid adoption of cloud computing in business, governmental and educational IT deployment. There is also a growing trends of combining mobile computing and cloud computing as a new popular computing paradigm nowadays. This thesis envisions the future of mobile computing which is primarily affected by following three trends: First, servers in cloud equipped with high speed multi-core technology have been the main stream today. Meanwhile, ARM processor powered servers is growingly became popular recently and the virtualization on ARM systems is also gaining wide ranges of attentions recently. Second, high-speed internet has been pervasive and highly available. Mobile devices are able to connect to cloud anytime and anywhere. Third, cloud computing is reshaping the way of using computing resources. The classic pay/scale-as-you-go model allows hardware resources to be optimally allocated and well-managed. These three trends lend credence to a new mobile computing model with the combination of resource-rich cloud and less powerful mobile devices. In this model, mobile devices run the core virtualization hypervisor with virtualized phone instances, allowing for pervasive access to more powerful, highly-available virtual phone clones in the cloud. The centralized cloud, powered by rich computing and memory recourses, hosts virtual phone clones and repeatedly synchronize the data changes with virtual phone instances running on mobile devices. Users can flexibly isolate different computing environments. In this dissertation, we explored the opportunity of leveraging cloud resources for mobile computing for the purpose of energy saving, performance augmentation as well as secure computing enviroment isolation. We proposed a framework that allows mo- bile users to seamlessly leverage cloud to augment the computing capability of mobile devices and also makes it simpler for application developers to run their smartphone applications in the cloud without tedious application partitioning. This framework was built with virtualization on both server side and mobile devices. It has three building blocks including agile virtual machine deployment, efficient virtual resource management, and seamless mobile augmentation. We presented the design, imple- mentation and evaluation of these three components and demonstrated the feasibility of the proposed mobile cloud model

    GreenCourier: Carbon-Aware Scheduling for Serverless Functions

    Full text link
    This paper presents GreenCourier, a novel scheduling framework that enables the runtime scheduling of serverless functions across geographically distributed regions based on their carbon efficiencies. Our framework incorporates an intelligent scheduling strategy for Kubernetes and supports Knative as the serverless platform. To obtain real-time carbon information for different geographical regions, our framework supports multiple marginal carbon emissions sources such as WattTime and the Carbon-aware SDK. We comprehensively evaluate the performance of our framework using the Google Kubernetes Engine and production serverless function traces for scheduling functions across Spain, France, Belgium, and the Netherlands. Results from our experiments show that compared to other approaches, GreenCourier reduces carbon emissions per function invocation by an average of 13.25%.Comment: Accepted at the ACM 9th International Workshop on Serverless Computing (WoSC@Middleware'23

    Maiter: An Asynchronous Graph Processing Framework for Delta-based Accumulative Iterative Computation

    Full text link
    Myriad of graph-based algorithms in machine learning and data mining require parsing relational data iteratively. These algorithms are implemented in a large-scale distributed environment in order to scale to massive data sets. To accelerate these large-scale graph-based iterative computations, we propose delta-based accumulative iterative computation (DAIC). Different from traditional iterative computations, which iteratively update the result based on the result from the previous iteration, DAIC updates the result by accumulating the "changes" between iterations. By DAIC, we can process only the "changes" to avoid the negligible updates. Furthermore, we can perform DAIC asynchronously to bypass the high-cost synchronous barriers in heterogeneous distributed environments. Based on the DAIC model, we design and implement an asynchronous graph processing framework, Maiter. We evaluate Maiter on local cluster as well as on Amazon EC2 Cloud. The results show that Maiter achieves as much as 60x speedup over Hadoop and outperforms other state-of-the-art frameworks.Comment: ScienceCloud 2012, TKDE 201

    A Review on Various Energy Efficient Techniques in Cloud Environment

    Get PDF
    Cloud computing is web based mostly development and use of engineering. it is a mode of computing within which dynamically scalable and sometimes virtualized resources are provided as a service over the web. Users needn't have data of, experience in, or management over the technology infrastructure "in the cloud" that supports them. programming is one of the core steps to with efficiency exploit the capabilities of heterogeneous computing systems. On cloud computing platform, load equalisation of the whole system will be dynamically handled by using virtualization technology through that it becomes potential to remap virtual machine and physical resources in step with the modification in load. However, so as to boost performance, the virtual machines ought to totally utilize its resources and services by adapting to computing setting dynamically. The load balancing with correct allocation of resources should be bonded so as to boost resource utility and energy efficiency
    • …
    corecore