8,327 research outputs found

    Authentication of Satellite Navigation Signals by Wiretap Coding and Artificial Noise

    Full text link
    In order to combat the spoofing of global navigation satellite system (GNSS) signals we propose a novel approach for satellite signal authentication based on information-theoretic security. In particular we superimpose to the navigation signal an authentication signal containing a secret message corrupted by artificial noise (AN), still transmitted by the satellite. We impose the following properties: a) the authentication signal is synchronous with the navigation signal, b) the authentication signal is orthogonal to the navigation signal and c) the secret message is undecodable by the attacker due to the presence of the AN. The legitimate receiver synchronizes with the navigation signal and stores the samples of the authentication signal with the same synchronization. After the transmission of the authentication signal, through a separate public asynchronous authenticated channel (e.g., a secure Internet connection) additional information is made public allowing the receiver to a) decode the secret message, thus overcoming the effects of AN, and b) verify the secret message. We assess the performance of the proposed scheme by the analysis of both the secrecy capacity of the authentication message and the attack success probability, under various attack scenarios. A comparison with existing approaches shows the effectiveness of the proposed scheme

    Fiber Based Multiple-Access Optical Frequency Dissemination

    Full text link
    We demonstrate a fiber based multiple-access optical frequency dissemination scheme. Without using any additional laser sources, we reproduce the stable disseminated frequency at an arbitrary point of fiber link. Relative frequency stability of 3E10^{-16}/s and 4E10^{-18}/10^4s is obtained. A branching fiber network for highly-precision synchronization of optical frequency is made possible by this method and its applications are discussed.Comment: 5 pages, 3 figure

    Navigation system and method

    Get PDF
    In a global positioning system (GPS), such as the NAVSTAR/GPS system, wherein the position coordinates of user terminals are obtained by processing multiple signals transmitted by a constellation of orbiting satellites, an acquisition-aiding signal generated by an earth-based control station is relayed to user terminals via a geostationary satellite to simplify user equipment. The aiding signal is FSK modulated on a reference channel slightly offset from the standard GPS channel. The aiding signal identifies satellites in view having best geometry and includes Doppler prediction data as well as GPS satellite coordinates and identification data associated with user terminals within an area being served by the control station and relay satellite. The aiding signal significantly reduces user equipment by simplifying spread spectrum signal demodulation and reducing data processing functions previously carried out at the user terminals

    Time division multiplex system

    Get PDF
    Synchronizing apparatus for multi-access satellite time division multiplex syste

    Space-based Aperture Array For Ultra-Long Wavelength Radio Astronomy

    Full text link
    The past decade has seen the rise of various radio astronomy arrays, particularly for low-frequency observations below 100MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21cm line emission. However, Earth-based radio astronomy below frequencies of 30MHz is severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. Various studies in the past were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. We briefly present the achievable science cases, and discuss the system design for selected scenarios, such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the satellite network. In light of a scalable array and to avert single point of failure, we propose both centralized and distributed solutions for the ULW space-based array. We highlight the benefits of various deployment locations and summarize the technological challenges for future space-based radio arrays.Comment: Submitte
    • …
    corecore