4 research outputs found

    Coordination control of robot manipulators using flat outputs

    Get PDF
    Published ArticleThis paper focuses on the synchronizing control of multiple interconnected flexible robotic manipulators using differential flatness theory. The flatness theory has the advantage of simplifying trajectory tracking tasks of complex mechanical systems. Using this theory, we propose a new synchronization scheme whereby a formation of flatness based systems can be stabilized using their respective flat outputs. Using the flat outputs, we eliminate the need for cross coupling laws and communication protocols associated with such formations. The problem of robot coordination is reduced to synchronizing the flat outputs between the respective robot manipulators. Furthermore, the selection of the flat output used for the synchronizing control is not restricted as any system variable can be used. The problem of unmeasured states used in the control is also solved by reconstructing the missing states using flatness based interpolation. The proposed control law is less computationally intensive when compared to earlier reported work as integration of the differential equations is not required. Simulations using a formation of single link flexible joint robots are used to validate the proposed synchronizing control

    Coordination control of robot manipulators using flat outputs

    Get PDF
    Published ArticleThis paper focuses on the synchronizing control of multiple interconnected flexible robotic manipulators using differential flatness theory. The flatness theory has the advantage of simplifying trajectory tracking tasks of complex mechanical systems. Using this theory, we propose a new synchronization scheme whereby a formation of flatness based systems can be stabilized using their respective flat outputs. Using the flat outputs, we eliminate the need for cross coupling laws and communication protocols associated with such formations. The problem of robot coordination is reduced to synchronizing the flat outputs between the respective robot manipulators. Furthermore, the selection of the flat output used for the synchronizing control is not restricted as any system variable can be used. The problem of unmeasured states used in the control is also solved by reconstructing the missing states using flatness based interpolation. The proposed control law is less computationally intensive when compared to earlier reported work as integration of the differential equations is not required. Simulations using a formation of single link flexible joint robots are used to validate the proposed synchronizing control

    Output Global Oscillatory Synchronization of Heterogeneous Systems

    Get PDF
    International audienceThe global output synchronization problem for heterogeneous nonlinear systems having relative degree 2 or higher is studied. The proposed approach consists in two steps. First, a partial projection of individual subsystems into the Brockett oscillators is performed using a sliding-mode control. Second, the network of these oscillators is synchronized using the global synchronization results of a particular second order nonlinear oscillator model from Ahmed et al. (2019). Our approach is based on output feedback and uses a higher order sliding mode observer to estimate the states and perturbations of the synchronized nonlinear systems. Along with numerical simulations, the performance of the proposed synchronization scheme is experimentally verified on a network of Van der Pol oscillators
    corecore