1,280 research outputs found

    Secrecy Through Synchronization Errors

    Full text link
    In this paper, we propose a transmission scheme that achieves information theoretic security, without making assumptions on the eavesdropper's channel. This is achieved by a transmitter that deliberately introduces synchronization errors (insertions and/or deletions) based on a shared source of randomness. The intended receiver, having access to the same shared source of randomness as the transmitter, can resynchronize the received sequence. On the other hand, the eavesdropper's channel remains a synchronization error channel. We prove a secrecy capacity theorem, provide a lower bound on the secrecy capacity, and propose numerical methods to evaluate it.Comment: 5 pages, 6 figures, submitted to ISIT 201

    Multigroup Synchronization in 1D-Bernoulli Chaotic Collaborative CDMA

    Get PDF

    Compressive Sensing for Feedback Reduction in MIMO Broadcast Channels

    Full text link
    We propose a generalized feedback model and compressive sensing based opportunistic feedback schemes for feedback resource reduction in MIMO Broadcast Channels under the assumption that both uplink and downlink channels undergo block Rayleigh fading. Feedback resources are shared and are opportunistically accessed by users who are strong, i.e. users whose channel quality information is above a certain fixed threshold. Strong users send same feedback information on all shared channels. They are identified by the base station via compressive sensing. Both analog and digital feedbacks are considered. The proposed analog & digital opportunistic feedback schemes are shown to achieve the same sum-rate throughput as that achieved by dedicated feedback schemes, but with feedback channels growing only logarithmically with number of users. Moreover, there is also a reduction in the feedback load. In the analog feedback case, we show that the propose scheme reduces the feedback noise which eventually results in better throughput, whereas in the digital feedback case the proposed scheme in a noisy scenario achieves almost the throughput obtained in a noiseless dedicated feedback scenario. We also show that for a fixed given budget of feedback bits, there exist a trade-off between the number of shared channels and thresholds accuracy of the feedback SINR.Comment: Submitted to IEEE Transactions on Wireless Communications, April 200

    Multigroup Synchronization in 1D-Bernoulli Chaotic Collaborative CDMA

    Get PDF
    Code-division multiple access (CDMA) has played a remarkable role in the field of wireless communication systems, and its capacity and security requirements are still being addressed. Collaborative multiuser transmission and detection are a contemporary technique used in CDMA systems. The performance of these systems is governed by the proper accommodation of the users and by proper synchronization schemes. The major research concerns in the existing multiuser overloaded CDMA schemes are (i) statistically uncorrelated PN sequences that cause multiple-access interference (MAI) and (ii) the security of the user's data. In this paper, a novel grouped CDMA scheme, the 1D-Bernoulli chaotic collaborative CDMA (BCC-CDMA), is introduced, in which mutually orthogonal chaotic sequences spread the users' data within a group. The synchronization of multiple groups in this scheme has been analyzed under MAI limited environments and the results are presented. This increases the user capacity and also provides sufficient security as a result of the correlation properties possessed by the chaotic codes. Multigroup synchronization is achieved using a 1D chaotic pilot sequence generated by the Bernoulli Map. The mathematical model of the proposed system is described and compared with the theoretical model of the synchronization in CDMA, the simulation results of which are presented

    Database Matching Under Noisy Synchronization Errors

    Full text link
    The re-identification or de-anonymization of users from anonymized data through matching with publicly available correlated user data has raised privacy concerns, leading to the complementary measure of obfuscation in addition to anonymization. Recent research provides a fundamental understanding of the conditions under which privacy attacks, in the form of database matching, are successful in the presence of obfuscation. Motivated by synchronization errors stemming from the sampling of time-indexed databases, this paper presents a unified framework considering both obfuscation and synchronization errors and investigates the matching of databases under noisy entry repetitions. By investigating different structures for the repetition pattern, replica detection and seeded deletion detection algorithms are devised and sufficient and necessary conditions for successful matching are derived. Finally, the impacts of some variations of the underlying assumptions, such as the adversarial deletion model, seedless database matching, and zero-rate regime, on the results are discussed. Overall, our results provide insights into the privacy-preserving publication of anonymized and obfuscated time-indexed data as well as the closely related problem of the capacity of synchronization channels

    Exact Classical Simulation of the GHZ Distribution

    Get PDF
    John Bell has shown that the correlations entailed by quantum mechanics cannot be reproduced by a classical process involving non-communicating parties. But can they be simulated with the help of bounded communication? This problem has been studied for more than twenty years and it is now well understood in the case of bipartite entanglement. However, the issue was still widely open for multipartite entanglement, even for the simplest case, which is the tripartite Greenberger-Horne-Zeilinger (GHZ) state. We give an exact simulation of arbitrary independent von Neumann measurements on general n-partite GHZ states. Our protocol requires O(n^2) bits of expected communication between the parties, and O(n*log(n)) expected time is sufficient to carry it out in parallel. Furthermore, we need only an expectation of O(n) independent unbiased random bits, with no need for the generation of continuous real random variables nor prior shared random variables. In the case of equatorial measurements, we improve earlier results with a protocol that needs only O(n*log(n)) bits of communication and O(log^2(n)) parallel time. At the cost of a slight increase in the number of bits communicated, these tasks can be accomplished with a constant expected number of rounds
    • …
    corecore