8 research outputs found

    Symmetry-Based Disentangled Representation Learning requires Interaction with Environments

    Get PDF
    Finding a generally accepted formal definition of a disentangled representation in the context of an agent behaving in an environment is an important challenge towards the construction of data-efficient autonomous agents. Higgins et al. (2018) recently proposed Symmetry-Based Disentangled Representation Learning, a definition based on a characterization of symmetries in the environment using group theory. We build on their work and make observations, theoretical and empirical, that lead us to argue that Symmetry-Based Disentangled Representation Learning cannot only be based on static observations: agents should interact with the environment to discover its symmetries. Our experiments can be reproduced in Colab and the code is available on GitHub

    Explainability in Deep Reinforcement Learning

    Get PDF
    A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems.Comment: Article accepted at Knowledge-Based System

    Explainability in Deep Reinforcement Learning

    Get PDF
    International audienceA large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems

    Object Detection for Embodied Agents using Sensory Commutativity of Action Sequences

    Get PDF
    International audienceWe study perception in the scenario of an embodied agent equipped with first-person sensors and a continuous motor space with multiple degrees of freedom.We introduce a method for movable and immovable object detection that exploitsthe commutative properties of action sequences. Our method is based on playingan action sequence in two different orders from the same starting point, and testedon 3D realistic robotics setups

    Switchable Lightweight Anti-symmetric Processing (SLAP) with CNN Outspeeds Data Augmentation by Smaller Sample -- Application in Gomoku Reinforcement Learning

    Full text link
    To replace data augmentation, this paper proposed a method called SLAP to intensify experience to speed up machine learning and reduce the sample size. SLAP is a model-independent protocol/function to produce the same output given different transformation variants. SLAP improved the convergence speed of convolutional neural network learning by 83% in the experiments with Gomoku game states, with only one eighth of the sample size compared with data augmentation. In reinforcement learning for Gomoku, using AlphaGo Zero/AlphaZero algorithm with data augmentation as baseline, SLAP reduced the number of training samples by a factor of 8 and achieved similar winning rate against the same evaluator, but it was not yet evident that it could speed up reinforcement learning. The benefits should at least apply to domains that are invariant to symmetry or certain transformations. As future work, SLAP may aid more explainable learning and transfer learning for domains that are not invariant to symmetry, as a small step towards artificial general intelligence.Comment: Change title; 6 pages, 8 figure
    corecore