61,732 research outputs found

    Chiral symmetry breaking and topology for all N

    Full text link
    We investigate spontaneous chiral symmetry breaking in SU(N) gauge theories at large N using overlap fermions. The exact zero modes and the low-lying modes of the Dirac operator provide the tools to gain insight into the interplay between chiral symmetry breaking and topology. We find that topology indeed drives chiral symmetry breaking at N=3 as well as at large N. By comparing the results on various volumes and at different lattice spacings we are able to show that our conclusions are not affected by finite volume effects and also hold in the continuum limit. We then address the question whether the topology can be usefully described in terms of instantons.Comment: Talk at Lattice 2003 (chiral); 3 pages, 2 figures, espcrc2.st

    Topological Symmetry Breaking on Einstein Manifolds

    Full text link
    It is known that if gauge conditions have Gribov zero modes, then topological symmetry is broken. In this paper we apply it to topological gravity in dimension n≥3n \geq 3. Our choice of the gauge condition for conformal invariance is R+α=0R+{\alpha}=0 , where RR is the Ricci scalar curvature. We find when α≠0\alpha \neq 0, topological symmetry is not broken, but when α=0\alpha =0 and solutions of the Einstein equations exist then topological symmetry is broken. This conditions connect to the Yamabe conjecture. Namely negative constant scalar curvature exist on manifolds of any topology, but existence of nonnegative constant scalar curvature is restricted by topology. This fact is easily seen in this theory. Topological symmetry breaking means that BRS symmetry breaking in cohomological field theory. But it is found that another BRS symmetry can be defined and physical states are redefined. The divergence due to the Gribov zero modes is regularized, and the theory after topological symmetry breaking become semiclassical Einstein gravitational theory under a special definition of observables.Comment: 16 pages, Late

    Curvature and topological effects on dynamical symmetry breaking in a four- and eight-fermion interaction model

    Full text link
    A dynamical mechanism for symmetry breaking is investigated under the circumstances with the finite curvature, finite size and non-trivial topology. A four- and eight-fermion interaction model is considered as a prototype model which induces symmetry breaking at GUT era. Evaluating the effective potential in the leading order of the 1/N-expansion by using the dimensional regularization, we explicitly calculate the phase boundary which divides the symmetric and the broken phase in a weakly curved space-time and a flat space-time with non-trivial topology, RD−1⊗S1R^{D-1} \otimes S^1.Comment: 20 pages, 21 figure

    Exploring Residual Gauge Symmetry Breaking

    Get PDF
    Simulations of pure-gauge SU(2) lattice gauge theory are performed in the minimal Coulomb gauge. This leaves a residual or remnant gauge symmetry still active which is global in three directions but still local in one. Using averaged fourth-dimension pointing links as a spin-like order parameter, the remnant symmetry appears to undergo spontaneous symmetry breaking at around β=2.6\beta = 2.6. Both the Binder cumulant and the magnetization itself exhibit crossings in this region using lattices up to 20420^4, and a susceptibility peak is also observed. Finite size scaling indicates a weak first-order transition. The symmetry breaking is also observed to take place in the fundamental-adjoint plane, and is coincident with the strong first-order transition that exists there at large βadjoint\beta_{\rm{adjoint}}. This provides confirmation that this phase transition is a symmetry-breaking transition. A well-known theorem concerning the instantaneous Coulomb potential has previously proven that a transition where such a Coulomb-gauge remnant symmetry breaks is necessarily deconfining.Comment: 7 pages, 4 figures (6 figure files), PoS style, Lattice 2006 Poster(Topology and Confinement

    Higgs →\rightarrow μτ\mu\tau as an indication for S4S_4 flavor symmetry

    Full text link
    Lepton flavor violating Higgs decays can arise in flavor symmetry models where the Higgs sector is responsible for both the electroweak and the flavor symmetry breaking. Here we advocate an S4S_4 three-Higgs-doublet model where tightly constrained flavor changing neutral currents are suppressed by a remnant Z3Z_3 symmetry. A small breaking of this Z3Z_3 symmetry can explain the 2.4 σ2.4\,\sigma excess of Higgs decay final states with a μτ\mu \tau topology reported recently by CMS if the new neutral scalars are light. The model also predicts sizable rates for lepton flavor violating Higgs decays in the eτe\tau and eμe \mu channels because of the unifying S4S_4 flavor symmetry.Comment: 15+9 pages, 7 figures, updated for publication in PR
    • …
    corecore