8 research outputs found

    Symmetric interpolatory dual wavelet frames

    Full text link
    For any symmetry group HH and any appropriate matrix dilation we give an explicit method for the construction of HH-symmetric refinable interpolatory refinable masks which satisfy sum rule of arbitrary order nn. For each such mask we give an explicit technique for the construction of dual wavelet frames such that the corresponding wavelet masks are mutually symmetric and have the vanishing moments up to the order n. For an abelian symmetry group HH we modify the technique such that each constructed wavelet mask is HH-symmetric.Comment: 22 page

    Representation and design of wavelets using unitary circuits

    Get PDF
    The representation of discrete, compact wavelet transformations (WTs) as circuits of local unitary gates is discussed. We employ a similar formalism as used in the multiscale representation of quantum many-body wave functions using unitary circuits, further cementing the relation established in the literature between classical and quantum multiscale methods. An algorithm for constructing the circuit representation of known orthogonal, dyadic, discrete WTs is presented, and the explicit representation for Daubechies wavelets, coiflets, and symlets is provided. Furthermore, we demonstrate the usefulness of the circuit formalism in designing WTs, including various classes of symmetric wavelets and multiwavelets, boundary wavelets, and biorthogonal wavelets

    Representation and design of wavelets using unitary circuits

    Get PDF
    The representation of discrete, compact wavelet transformations (WTs) as circuits of local unitary gates is discussed. We employ a similar formalism as used in the multiscale representation of quantum many-body wave functions using unitary circuits, further cementing the relation established in the literature between classical and quantum multiscale methods. An algorithm for constructing the circuit representation of known orthogonal, dyadic, discrete WTs is presented, and the explicit representation for Daubechies wavelets, coiflets, and symlets is provided. Furthermore, we demonstrate the usefulness of the circuit formalism in designing WTs, including various classes of symmetric wavelets and multiwavelets, boundary wavelets, and biorthogonal wavelets
    corecore