10,833 research outputs found

    Symmetric duality for a class of nondifferentiable multi-objective fractional variational problems

    Get PDF
    AbstractWe introduce a symmetric dual pair for a class of nondifferentiable multi-objective fractional variational problems. Weak, strong, converse and self duality relations are established under certain invexity assumptions. The paper includes extensions of previous symmetric duality results for multi-objective fractional variational problems obtained by Kim, Lee and Schaible [D.S. Kim, W.J. Lee, S. Schaible, Symmetric duality for invex multiobjective fractional variational problems, J. Math. Anal. Appl. 289 (2004) 505–521] and symmetric duality results for the static case obtained by Yang, Wang and Deng [X.M. Yang, S.Y. Wang, X.T. Deng, Symmetric duality for a class of multiobjective fractional programming problems, J. Math. Anal. Appl. 274 (2002) 279–295] to the dynamic case

    The complexity of finite-valued CSPs

    Full text link
    We study the computational complexity of exact minimisation of rational-valued discrete functions. Let Γ\Gamma be a set of rational-valued functions on a fixed finite domain; such a set is called a finite-valued constraint language. The valued constraint satisfaction problem, VCSP(Γ)\operatorname{VCSP}(\Gamma), is the problem of minimising a function given as a sum of functions from Γ\Gamma. We establish a dichotomy theorem with respect to exact solvability for all finite-valued constraint languages defined on domains of arbitrary finite size. We show that every constraint language Γ\Gamma either admits a binary symmetric fractional polymorphism in which case the basic linear programming relaxation solves any instance of VCSP(Γ)\operatorname{VCSP}(\Gamma) exactly, or Γ\Gamma satisfies a simple hardness condition that allows for a polynomial-time reduction from Max-Cut to VCSP(Γ)\operatorname{VCSP}(\Gamma)

    The power of linear programming for general-valued CSPs

    Full text link
    Let DD, called the domain, be a fixed finite set and let Γ\Gamma, called the valued constraint language, be a fixed set of functions of the form f:DmQ{}f:D^m\to\mathbb{Q}\cup\{\infty\}, where different functions might have different arity mm. We study the valued constraint satisfaction problem parametrised by Γ\Gamma, denoted by VCSP(Γ)(\Gamma). These are minimisation problems given by nn variables and the objective function given by a sum of functions from Γ\Gamma, each depending on a subset of the nn variables. Finite-valued constraint languages contain functions that take on only rational values and not infinite values. Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation (BLP). For a valued constraint language Γ\Gamma, BLP is a decision procedure for Γ\Gamma if and only if Γ\Gamma admits a symmetric fractional polymorphism of every arity. For a finite-valued constraint language Γ\Gamma, BLP is a decision procedure if and only if Γ\Gamma admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ\Gamma admits a symmetric fractional polymorphism of arity 2. Using these results, we obtain tractability of several novel classes of problems, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) kk-submodular on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: A full version of a FOCS'12 paper by the last two authors (arXiv:1204.1079) and an ICALP'13 paper by the first author (arXiv:1207.7213) to appear in SIAM Journal on Computing (SICOMP

    An SDP Approach For Solving Quadratic Fractional Programming Problems

    Full text link
    This paper considers a fractional programming problem (P) which minimizes a ratio of quadratic functions subject to a two-sided quadratic constraint. As is well-known, the fractional objective function can be replaced by a parametric family of quadratic functions, which makes (P) highly related to, but more difficult than a single quadratic programming problem subject to a similar constraint set. The task is to find the optimal parameter λ\lambda^* and then look for the optimal solution if λ\lambda^* is attained. Contrasted with the classical Dinkelbach method that iterates over the parameter, we propose a suitable constraint qualification under which a new version of the S-lemma with an equality can be proved so as to compute λ\lambda^* directly via an exact SDP relaxation. When the constraint set of (P) is degenerated to become an one-sided inequality, the same SDP approach can be applied to solve (P) {\it without any condition}. We observe that the difference between a two-sided problem and an one-sided problem lies in the fact that the S-lemma with an equality does not have a natural Slater point to hold, which makes the former essentially more difficult than the latter. This work does not, either, assume the existence of a positive-definite linear combination of the quadratic terms (also known as the dual Slater condition, or a positive-definite matrix pencil), our result thus provides a novel extension to the so-called "hard case" of the generalized trust region subproblem subject to the upper and the lower level set of a quadratic function.Comment: 26 page

    The Power of Linear Programming for Valued CSPs

    Full text link
    A class of valued constraint satisfaction problems (VCSPs) is characterised by a valued constraint language, a fixed set of cost functions on a finite domain. An instance of the problem is specified by a sum of cost functions from the language with the goal to minimise the sum. This framework includes and generalises well-studied constraint satisfaction problems (CSPs) and maximum constraint satisfaction problems (Max-CSPs). Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation. Using this result, we obtain tractability of several novel and previously widely-open classes of VCSPs, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) bisubmodular (also known as k-submodular) on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: Corrected a few typo
    corecore