5 research outputs found

    Some closure features of locally testable affine-invariant properties

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 31-32).We prove that the class of locally testable affine-invariant properties is closed under sums, intersections and "lifts". The sum and intersection are two natural operations on linear spaces of functions, where the sum of two properties is simply their sum as a vector space. The "lift" is a less well-studied property, which creates some interesting affine-invariant properties over large domains, from properties over smaller domains. Previously such results were known for "single-orbit characterized" affine-invariant properties, which are known to be a subclass of locally testable ones, and are potentially a strict subclass. The fact that the intersection of locally-testable affine-invariant properties are locally testable could have been derived from previously known general results on closure of property testing under set-theoretic operations, but was not explicitly observed before. The closure under sum and lifts is implied by an affirmative answer to a central question attempting to characterize locally testable affine-invariant properties, but the status of that question remains wide open. Affine-invariant properties are clean abstractions of commonly studied, and extensively used, algebraic properties such linearity and low-degree. Thus far it is not known what makes affine-invariant properties locally testable - no characterizations are known, and till this work it was not clear if they satisfied any closure properties. This work shows that the class of locally testable affine-invariant properties are closed under some very natural operations. Our techniques use ones previously developed for the study of "single-orbit characterized" properties, but manage to apply them to the potentially more general class of all locally testable ones via a simple connection that may be of broad interest in the study of affine-invariant properties.by Alan Xinyu Guo.S.M

    Symmetric LDPC codes are not necessarily locally testable

    No full text
    Locally testable codes, i.e., codes where membership in the code is testable with a constant number of queries, have played a central role in complexity theory. It is well known that a code must be a “low-density parity check ” (LDPC) code for it to be locally testable, but few LDPC codes are known to the locally testable, and even fewer classes of LDPC codes are known not to be locally testable. Indeed, most previous examples of codes that are not locally testable were also not LDPC. The only exception was in the work of Ben-Sasson et al. [2005] who showed that random LDPC codes are not locally testable. Random codes lack “structure ” and in particular “symmetries ” motivating the possibility that “symmetric LDPC ” codes are locally testable, a question raised in the work of Alon et al. [2005]. If true such a result would capture many of the basic ingredients of known locally testable codes. In this work we rule out such a possibility by giving a highly symmetric (“2-transitive”) family of LDPC codes that are not testable with constant number of queries. We do so by continuing the exploration of “affine-invariant codes ” — codes where the coordinates of the words are associated with a finite field, and the code is invariant under affine transformation

    New affine-invariant codes from lifting

    Full text link
    corecore