41 research outputs found

    The case for in-the-lab botnet experimentation: creating and taking down a 3000-node botnet

    Get PDF
    International audienceBotnets constitute a serious security problem. A lot of effort has been invested towards understanding them better, while developing and learning how to deploy effective counter-measures against them. Their study via various analysis, modelling and experimental methods are integral parts of the development cycle of any such botnet mitigation schemes. It also constitutes a vital part of the process of understanding present threats and predicting future ones. Currently, the most popular of these techniques are “in-the-wild” botnet studies, where researchers interact directly with real-world botnets. This approach is less than ideal, for many reasons that we discuss in this paper, including scientific validity, ethical and legal issues. Consequently, we present an alternative approach employing “in the lab” experiments involving at-scale emulated botnets. We discuss the advantages of such an approach over reverse engineering, analytical modelling, simulation and in-the-wild studies. Moreover, we discuss the requirements that facilities supporting them must have. We then describe an experiment in which we emulated a close to 3000-node, fully-featured version of the Waledac botnet, complete with a reproduced command and control (C&C) infrastructure. By observing the load characteristics and yield (rate of spamming) of such a botnet, we can draw interesting conclusions about its real-world operations and design decisions made by its creators. Furthermore, we conducted experiments where we launched sybil attacks against the botnet. We were able to verify that such an attack is, in the case of Waledac, viable. However, we were able to determine that mounting such an attack is not so simple: high resource consumption can cause havoc and partially neutralise the attack. Finally, we were able to repeat the attack with varying parameters, in an attempt to optimise it. The merits of this experimental approach is underlined by the fact that it is very difficult to obtain these results by employing other methods

    Analytical Lifecycle Modeling and Threat Analysis of Botnets

    Get PDF
    Botnet, which is an overlay network of compromised computers built by cybercriminals known as botmasters, is the new phenomenon that has caused deep concerns to the security professionals responsible for governmental, academic, and private sector networks. Botmasters use a plethora of methods to infect network-accessible devices (nodes). The initial malware residing on these nodes then either connects to a central Command & Control (C&C) server or joins a Peer-to-Peer (P2P) botnet. At this point, the nodes can receive the commands of the botmaster and proceed to engage in illicit activities such as Distributed Denial-of-Service (DDoS) attacks and massive e-mail spam campaigns. Being able to reliably estimate the size of a botnet is an important task which allows the adequate deployment of mitigation strategies against the botnet. In this thesis, we develop analytical models that capture the botnet expansion and size evolution behaviors in sufficient details so as to accomplish this crucial estimation/analysis task. We develop four Continuous-Time Markov Chain (CTMC) botnet models: the first two, SComI and SComF, allow the prediction of initial unhindered botnet expansion in the case of infinite and finite population sizes, respectively. The third model, the SIC model, is a botnet lifecycle model which accounts for all important node stages and allows botnet size estimates as well as evaluation of botnet mitigation strategies such as disinfections of nodes and attacks on botnet's C&C mechanism. Finally, the fourth model, the SIC-P2P model, is an extension of the SIC model suitable for P2P botnets, allowing fine-grained analysis of mitigation strategies such as index poisoning and sybil attack. As the convergence of Internet and traditional telecommunication services is underway, the threat of botnets is looming over essential basic communication services. As the last contribution presented in this thesis, we analyze the threat of botnets in the 4G cellular wireless networks. We identify the vulnerability of the air interface, i.e. the Long Term Evolution (LTE), which allows a successful botnet-launched DDoS attack against it. Through simulation using an LTE simulator, we determine the number of botnet nodes per cell that can significantly degrade the service availability of such cellular networks

    Advances in modern botnet understanding and the accurate enumeration of infected hosts

    Get PDF
    Botnets remain a potent threat due to evolving modern architectures, inadequate remediation methods, and inaccurate measurement techniques. In response, this re- search exposes the architectures and operations of two advanced botnets, techniques to enumerate infected hosts, and pursues the scientific refinement of infected-host enu- meration data by recognizing network structures which distort measurement. This effort is motivated by the desire to reveal botnet behavior and trends for future mit- igation, methods to discover infected hosts for remediation in real time and threat assessment, and the need to reveal the inaccuracy in population size estimation when only counting IP addresses. Following an explanation of theoretical enumeration techniques, the architectures, deployment methodologies, and malicious output for the Storm and Waledac botnets are presented. Several tools developed to enumerate these botnets are then assessed in terms of performance and yield. Finally, this study documents methods that were developed to discover the boundaries and impact of NAT and DHCP blocks in network populations along with a footprint measurement based on relative entropy which better describes how uniformly infections communi- cate through their IP addresses. Population data from the Waledac botnet was used to evaluate these techniqu

    Efficiency Study of Sybil Attack on P2P Botnets

    Get PDF
    Abstract Efficiency Study of Sybil Attack on P2P Botnets Yuhang Luo The main objective of this thesis is to modeling and analysis of Kademlia based Botnets in order to study the efficiency of Sybil attack on such botnets. We start by researching the structure of Kademlia and specially its look-up procedure, i.e. the process how a node find a desired target node in the Botnet. For the simplicity of analysis, two assumptions are made: a) node ID space is full filled; b) a Sybil node replies a fake triple when it is queried.With these assumptions, the probability jumping functions and jumping matrices are derived. By adding the distribution of Sybil nodes, we obtain the probability that target nodes are found successfully(Psuccess). We then show numerical results of the distribution of Psuccess with different system parameters. From the results, we can obtain some insight on how the parameters affect the efficiency of Sybil attack. Among all these parameters, we find that ďż˝, which is known as the number of nodes the initial node requries, is the key parameter of Kademlia based botnet. We also discuss how the triples a node keeps for every distance (k) and the total number of nodes in botnet (n) will affect Psuccess. Based on our model and numerical results, we will draw some conclusions on how to make P2P botnet more robust or more vulnerable in facing Sybil attacking

    Tracking and Mitigation of Malicious Remote Control Networks

    Full text link
    Attacks against end-users are one of the negative side effects of today’s networks. The goal of the attacker is to compromise the victim’s machine and obtain control over it. This machine is then used to carry out denial-of-service attacks, to send out spam mails, or for other nefarious purposes. From an attacker’s point of view, this kind of attack is even more efficient if she manages to compromise a large number of machines in parallel. In order to control all these machines, she establishes a "malicious remote control network", i.e., a mechanism that enables an attacker the control over a large number of compromised machines for illicit activities. The most common type of these networks observed so far are so called "botnets". Since these networks are one of the main factors behind current abuses on the Internet, we need to find novel approaches to stop them in an automated and efficient way. In this thesis we focus on this open problem and propose a general root cause methodology to stop malicious remote control networks. The basic idea of our method consists of three steps. In the first step, we use "honeypots" to collect information. A honeypot is an information system resource whose value lies in unauthorized or illicit use of that resource. This technique enables us to study current attacks on the Internet and we can for example capture samples of autonomous spreading malware ("malicious software") in an automated way. We analyze the collected data to extract information about the remote control mechanism in an automated fashion. For example, we utilize an automated binary analysis tool to find the Command & Control (C&C) server that is used to send commands to the infected machines. In the second step, we use the extracted information to infiltrate the malicious remote control networks. This can for example be implemented by impersonating as a bot and infiltrating the remote control channel. Finally, in the third step we use the information collected during the infiltration phase to mitigate the network, e.g., by shutting down the remote control channel such that the attacker cannot send commands to the compromised machines. In this thesis we show the practical feasibility of this method. We examine different kinds of malicious remote control networks and discuss how we can track all of them in an automated way. As a first example, we study botnets that use a central C&C server: We illustrate how the three steps can be implemented in practice and present empirical measurement results obtained on the Internet. Second, we investigate botnets that use a peer-to-peer based communication channel. Mitigating these botnets is harder since no central C&C server exists which could be taken offline. Nevertheless, our methodology can also be applied to this kind of networks and we present empirical measurement results substantiating our method. Third, we study fast-flux service networks. The idea behind these networks is that the attacker does not directly abuse the compromised machines, but uses them to establish a proxy network on top of these machines to enable a robust hosting infrastructure. Our method can be applied to this novel kind of malicious remote control networks and we present empirical results supporting this claim. We anticipate that the methodology proposed in this thesis can also be used to track and mitigate other kinds of malicious remote control networks

    On Detection of Current and Next-Generation Botnets.

    Full text link
    Botnets are one of the most serious security threats to the Internet and its end users. A botnet consists of compromised computers that are remotely coordinated by a botmaster under a Command and Control (C&C) infrastructure. Driven by financial incentives, botmasters leverage botnets to conduct various cybercrimes such as spamming, phishing, identity theft and Distributed-Denial-of-Service (DDoS) attacks. There are three main challenges facing botnet detection. First, code obfuscation is widely employed by current botnets, so signature-based detection is insufficient. Second, the C&C infrastructure of botnets has evolved rapidly. Any detection solution targeting one botnet instance can hardly keep up with this change. Third, the proliferation of powerful smartphones presents a new platform for future botnets. Defense techniques designed for existing botnets may be outsmarted when botnets invade smartphones. Recognizing these challenges, this dissertation proposes behavior-based botnet detection solutions at three different levels---the end host, the edge network and the Internet infrastructure---from a small scale to a large scale, and investigates the next-generation botnet targeting smartphones. It (1) addresses the problem of botnet seeding by devising a per-process containment scheme for end-host systems; (2) proposes a hybrid botnet detection framework for edge networks utilizing combined host- and network-level information; (3) explores the structural properties of botnet topologies and measures network components' capabilities of large-scale botnet detection at the Internet infrastructure level; and (4) presents a proof-of-concept mobile botnet employing SMS messages as the C&C and P2P as the topology to facilitate future research on countermeasures against next-generation botnets. The dissertation makes three primary contributions. First, the detection solutions proposed utilize intrinsic and fundamental behavior of botnets and are immune to malware obfuscation and traffic encryption. Second, the solutions are general enough to identify different types of botnets, not a specific botnet instance. They can also be extended to counter next-generation botnet threats. Third, the detection solutions function at multiple levels to meet various detection needs. They each take a different perspective but are highly complementary to each other, forming an integrated botnet detection framework.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91382/1/gracez_1.pd

    Security analysis of network anomalies mitigation schemes in IoT networks

    Get PDF
    The Internet of Things (IoT) is on the rise and it is giving a new shape to several fields such as smart cities, smart homes, smart health, etc. as it facilitates the connection of physical objects to the internet. However, this advancement comes along with new challenges in terms of security of the devices in the IoT networks. Some of these challenges come as network anomalies. Hence, this has prompted the use of network anomaly mitigation schemes as an integral part of the defense mechanisms of IoT networks in order to protect the devices from malicious users. Thus, several schemes have been proposed to mitigate network anomalies. This paper covers a review of different network anomaly mitigation schemes in IoT networks. The schemes' objectives, operational procedures, and strengths are discussed. A comparison table of the reviewed schemes, as well as a taxonomy based on the detection methodology, is provided. In contrast to other surveys that presented qualitative evaluations, our survey provides both qualitative and quantitative evaluations. The UNSW-NB15 dataset was used to conduct a performance evaluation of some classification algorithms used for network anomaly mitigation schemes in IoT. Finally, challenges and open issues in the development of network anomaly mitigation schemes in IoT are discussed
    corecore