-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

The case for in-the-lab botnet experimentation: creating
and taking down a 3000-node botnet
Joan Calvet, Carlton R. Davis, José M. Fernandez, Jean-Yves Marion,

Pier-Luc St-Onge, Wadie Guizani, Pierre-Marc Bureau, Somayaji Anil

» To cite this version:

Joan Calvet, Carlton R. Davis, José M. Fernandez, Jean-Yves Marion, Pier-Luc St-Onge, et al.. The
case for in-the-lab botnet experimentation: creating and taking down a 3000-node botnet. Annual
Computer Security Applications Conference, Dec 2010, Austin, Texas, United States. inria-00536706

HAL Id: inria-00536706
https://hal.inria.fr /inria-00536706
Submitted on 18 Nov 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50039881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00536706
https://hal.archives-ouvertes.fr

The case for in-the-lab botnet experimentation:
creating and taking down a 3000-node botnet

Joan Calvet"?, Carlton R. Davis', José M. Fernandez', Jean-Yves Marion?, Pier-Luc St—Ongel, Wadie Guizani®, Pierre-Marc Bureau®, and

Anil Somayaji*

"Ecole Polytechnique de Montréal, Montréal, QC, Canada

{joan.calvet |carlton.davis|jose.fernandez|pier-luc.st-onge}@polymtl.ca

*Nancy University - LORIA, Nancy, France, {marionijy|guizaniw}@loria.fr

3ESET, San Diego, CA, USA, pbureauleset .com

4Carleton University, Ottawa, ON, Canada, soma@ccsl.carleton.ca

ABSTRACT

Botnets constitute a serious security problem. A lot of effort has
been invested towards understanding them better, while develop-
ing and learning how to deploy effective counter-measures against
them. Their study via various analysis, modelling and experimen-
tal methods are integral parts of the development cycle of any such
botnet mitigation schemes. It also constitutes a vital part of the pro-
cess of understanding present threats and predicting future ones.
Currently, the most popular of these techniques are “in-the-wild”
botnet studies, where researchers interact directly with real-world
botnets. This approach is less than ideal, for many reasons that we
discuss in this paper, including scientific validity, ethical and legal
issues. Consequently, we present an alternative approach employ-
ing “in the lab” experiments involving at-scale emulated botnets.
We discuss the advantages of such an approach over reverse engi-
neering, analytical modelling, simulation and in-the-wild studies.
Moreover, we discuss the requirements that facilities supporting
them must have. We then describe an experiment in which we em-
ulated a close to 3000-node, fully-featured version of the Waledac
botnet, complete with a reproduced command and control (C&C)
infrastructure. By observing the load characteristics and yield (rate
of spamming) of such a botnet, we can draw interesting conclu-
sions about its real-world operations and design decisions made
by its creators. Furthermore, we conducted experiments where we
launched sybil attacks against the botnet. We were able to verify
that such an attack is, in the case of Waledac, viable. However,
we were able to determine that mounting such an attack is not so
simple: high resource consumption can cause havoc and partially
neutralise the attack. Finally, we were able to repeat the attack with
varying parameters, in an attempt to optimise it. The merits of this
experimental approach is underlined by the fact that it is very diffi-
cult to obtain these results by employing other methods.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA

Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

1. INTRODUCTION

Botnets constitute one of the most worrying computer security
threats. Practically all Internet users have experienced the ill ef-
fects of botnets, whether by receiving large volumes of spams daily,
having their confidential information stolen, lost access to critical
Internet services, etc. Botnets are complex and large distributed
systems consisting of several thousands, and in some cases, mil-
lions of computers. In order to develop a good understanding of
such a distributed system and gain insights on its vulnerabilities
and weaknesses, it is necessary to study the system as a whole. To
that purpose, efforts need to be made to understand how the various
parts of the system interact, and in particular how the size and scale
of such systems affect their performance.

While analysis by reverse engineering of botnet binaries can ini-
tially help us better understand them, it does not always provide
the “big picture” in terms of botnet operations. This is because its
other parts might not be visible or accessible. Beyond that, we can
partially increase our understanding by observing and analysing in-
the-wild botnets as a whole, giving indirect visibility of some of
these inaccesible components. Studies such as [6, 15, 16, 18, 22]
conducting experiments with in-the-wild botnets, have contributed
to furthering understanding of botnets. Nonetheless, this method
can be problematic, owing to the following: (i) In order to exper-
iment with in-the-wild botnets, researchers need to create entities
which join the botnets and perform the tasks the researchers stip-
ulate. If a significant number of entities is added to a botnet, it is
possible that the botnets operators will detect the presence of these
entities, and possibly implement counter-measures to protect their
botnets, and in so doing, potentially shift the botnet arms race fur-
ther in their favour. On the other hand, if the number of such entities
introduced constitutes only a small portion of the overall botnet, we
might not be able to accurately observe or predict at-scale effects.
(ii) There are legal and ethical issues involved in performing in-
the-wild botnet research; for example, in some jurisdictions (par-
ticularly in Europe), it is considered unethical and even illegal to
create entities that join a botnet, despite the fact that their purpose
might be to disrupt the botnet. There are also potential risks in-
volved in doing in-the-wild botnet research: some researchers who
investigated botnets have reported that their domains have received
distributed DoS attacks from the botnets [12,21]. (iii) It is diffi-
cult to get statistically significant results for experiments involv-
ing in-the-wild botnets. Values that are ascertained for variables

via a single experiment run—which often require several weeks or
months to complete—may be outliers rather than being represen-
tative values. In principle, the only way to guarantee that the re-
sults are statistically significant is to repeat the experiment multiple
times until the standard deviation of the values are within accept-
able limits. As highlighted above, it may be undesirable or even
counter-productive to perform an experiment on in-the-wild botnets
multiple times. Nonetheless, statistical significance is very impor-
tant because the changing conditions of the environment (churn of
infected population, actions by humans, etc.) could give the ap-
pearance that, for example, a mitigation strategy is effective, even
though the experimenter just happened to be “lucky” at the time of
the experiment. (iv) Since in-the-wild botnets experiments are not
controlled and (normally) cannot be repeated, they do not allow us
to explore the full design space and potential choice of parameters,
for example, those related to mitigation strategies being developed.
Thus, the solution tested and validated in a single in-the-wild exper-
iment could be far from optimal. For example, a failed experiment
because of an unlucky bad choice of parameters could lead us to
believe that a promising approach will not work, and cause us to
prematurely abandon it.

Simulation studies and analytical modelling have also been em-
ployed for botnet investigations. Analytical models are often com-
plex, and all but the more simplistic models are hard to understand
and resolve. While mathematical models like Markov chains [3]
and immunological equations have been used for other kinds of
malware, e.g. worms, botnet-specific analytical modelling has been
less common, either addressing propagation properties [8], perfor-
mance of the C&C infrastructure using graph theory [11, 25], or
other techniques [19]. Simulation results, on the other hand, are
more accessible and can be obtained by using ready-made net-
work simulators such as Opnet/Omnet, ns2, etc. and adapting them
to specific protocols, or by home-coding special purpose discrete-

event simulators tailored to model a particular botnet (e.g. the Kadem-

lia/Storm simulator in [9,10], and generic botnet models in [7,23]).
However, while it is easier to more precisely measure these perfor-
mance criteria in simulations, this approach has the disavantadge
that all aspects of the botnet must either be modelled and imple-
mented, or simply modelled away and ignored. This is particu-
larly problematic for two reasons. First, except for finer-grained,
network-based simulators (and even then), it is hard to model and
appropriately reproduce the network transmission characteristics
of the Internet. Second, it is also quite hard to model and simu-
late the behaviour of the universe of infectable machines and users,
which is particularly important in understanding the “churn” within
the botnet due to infection/disinfection, power-on-power-off cy-
cles, etc.

For these reasons, at-scale emulation studies, where conditions
as close as possible to the real-world are reproduced in a controlled
environment, are perhaps the best alternative to in-the-wild studies.
Emulation studies allow controlled repetition of the experiments to
see whether variations in environmental parameters, whether these
are controlled (by experiment design) or uncontrolled (but measur-
able) variables, significantly affect performance results. Moreover,
they are paramount in threat prediction research, in that they allow
us to safely explore the botnet design space in scenarios where the
botnet operating parameters have been optimised, something that
would be unthinkable with in-the-wild experimentation. On the
other hand, in comparison with simulation studies, where artificial
models are used in lieu of real botnet entities, in emulation exper-
iments, botnet entities that are either identical or slightly adapted
versions of their real-world counterparts, are executed in controlled
environments. While this at-scale approach requires large amount

of system resources and experimental preparation efforts, it is worth
pursuing due to its many advantages. First, as mentioned above,
this approach allows researchers to have greater control over the
experimental environment; consequently, more thorough investiga-
tion encompassing greater variation of experiment parameters can
be undertaken. Second, botnet emulation experiments can provide
information about botnets that would be very difficult or virtually
impossible to ascertain via in-the-wild studies, via simulation ex-
periments, or via reverse engineering analyses. Third, evaluating
botnet mitigation schemes using emulated botnets rather than in-
the-wild studies, allows researchers the privilege of hiding their
ammunition from botnets operators, until the mitigation schemes
are fully developed and optimised, at which point, the schemes can
be made available to appropriate authorities or those who feel “the
calling” and have the resources, and clout or mandate to overtly
go on the offence against botnets. Fourth, in addition to facili-
tating more thorough evaluation of botnet mitigation schemes (as
highlighted above), emulation studies can be conducted in signifi-
cantly less time than in-the-wild studies. Therefore, with this ap-
proach, security researchers and practitioners can be more effective
and proactive in the fight against botnets. Finally, at-scale botnet
emulation provides an avenue for investigating botnets that does
not present the same level of legal and ethical issues involved in
actively investigating botnets in-the-wild.

For all of these reasons, we jointly endeavoured to develop a dif-
ferent approach for conducting such at-scale, in-the-lab botnet em-
ulation experiments, as an alternative to these other methods of bot-
net analysis. In this paper, we introduce the philosophy, methodol-
ogy and tools of this approach, and present a case study involving a
particular botnet. The experiment described herein involved recre-
ating in the lab an isolated version of the Waledac botnet [4, 20]
consisting of approximately 3,000 nodes, and further, testing and
validating a mitigation scheme against it (sybil attack), that we had
theorised was possible in such previous work. The specific contri-
butions of the paper are the following: (i) we introduce and show
the feasibility of recreating and studying isolated at-scale botnet in
a secure environment, (ii) we provide the first significant evidence
that the Waledac botnet is vulnerable to sybil attack by demonstrat-
ing it in the lab, (iii) we illustrate how such emulated botnets can be
used to validate, refine and optimise botnet takedown mechanisms,
and (iv) we illustrate how at-scale experimentation of this type can
be used to obtain otherwise unaccessible information by revealing
previously unknown details about the non-visible components and
design decisions taken by Waledac creators and operators.

The rest of the paper is structured as follows. Section 2 describes
some previous work in the construction of experimental platforms
supporting botnet research. We then discuss the criteria that this
type of platforms should meet in order to support at-scale botnet
emulation experiments in a safe and scientifically sound manner.
We also describe the testbed and generic tools that we have used
to conduct our 3000-node botnet emulation experiment with the
Waledac botnet. Waledac itself and the experiment are described in
Section 3, where we also discuss the results obtained. This includes
both results about the viability of the sybil attack we described in
previous work [4] and, more interestingly, some valuable insights
regarding Waledac design and operations, that could not have been
obtained by other methods. We discuss the relevance of these re-
sults with respect to validating this kind of experimental approach
in Section 4 and conclude in Section 5 by summarizing our contri-
butions, presenting some limitations of our work and highlighting
avenues for future research.

2. BOTNET EMULATION EXPERIMENTS

2.1 Related Work

The idea of using laboratory experimentation facilities for botnet
research is not new. PlanetLab [17], Emulab [24], and DETER [2]
are popular network testbeds that are based on computers hosted at
multiple facilities. DETER in particular is specially geared towards
security research. These experimental platforms, though they have
proven to be very valuable facilities for researchers, are not that
suitable for high risk security experiments, such as botnets emula-
tion, owing to the risk of malware “breaking” through logical bar-
riers and escaping into the wild.

With regards to work related to high risk security experiments,
a botnet evaluation environment is described in [1] that is a “plug-
in” for Emulab-enabled network testbeds. This work is an initial
step in building a scalable laboratory testbed for experiments with
botnets, but one of the approaches the authors have used to con-
tain the network traffic within the testbed is to give the nodes un-
routable (private) IP addresses, which severely limits the type of
experiments that can be run on the testbed. Moreover, they only
managed hundreds of malicious bots, thus not allowing at-scale
emulation of large modern botnets. Jackson et al. [13] use DE-
TER to deploy their System for Live Investigation of Next Gener-
ation bots (SLINGbot) which, according to the authors, “enables
researchers to construct benign bots for the purposes of generating
and characterizing botnet command and control traffic”’. We took
a quite different approach mainly because we wanted to run high
risk experiments, e.g. involving real malware binaries, and thus we
decided to totally isolate our environment from the Internet.

Finally, John et al. [14] created a platform named Botlab which
monitors the behaviour of spam-oriented bots. Some of the goals
of this work is similar to ours, they are both geared to studying
botnets. However, there are significant differences. In their work,
real-world in-the-wild botnets are monitored, while in ours a com-
plete botnet is reproduced in an isolated and secure environment.

2.2 Design Criteria

The two computer security research labs involved in this work
have both adopted stringent security rules and scientific criteria.
This is a requirement in order to be able to conduct safe and rele-
vant experimental security research in general, and botnet emula-
tion experiments in particular. A full description of these facilities
and the associated criteria is given in [5]. We reproduce here the
criteria that we consider are specifically applicable to botnet emu-
lation experiments.

Highly secured. Malware can be potentially highly contagious and
is (by definition) developed for malicious intents. Consequently,
experiments involving malware should therefore take adequate pre-
cautionary measures to ensure that it is not accidentally released
into the wild during the course to the experiment. Perhaps the
only way of adequately mitigating risk associated to this threat is
for the experiment environment to be completely isolated from the
Internet and other networks. Thus we build our emulation plat-
form based on an isolated cluster within highly secured facilities.
The physical security of the labs includes strong physical barriers
(floor-to-ceiling walls, reinforced doors, etc.), surveillance systems
(cameras, motion detectors), a separate access control system using
multi-factor authentication. In terms of logical security, the cluster
is completely isolated from other computer networks (air gapped).
Scale. We desire to have an emulation platform capable of supporting-
at scale experiments; i.e. involving several thousands of bots. The
choice followed was to heavily rely on virtualisation. This allowed
us to have upwards of 30 virtual bots per physical machine.
Realism. An important requirement of our botnet emulation plat-
form is that it be capable of reproducing botnets that in principle

are identical (or close to identical) in functionality to those found
in the wild. To achieve this, it is necessary that very few changes (or
ideally none at all) be made to the bot binaries that are used to re-
produce the botnets. Changes should be restricted to those that are
necessary (if any are required) to overcome anti-virtualisation and
anti-debugging capabilities in the bot binaries. This constraint ne-
cessitates that nodes in the emulation platform be configured with
IP addresses that are hard coded in the bots binaries, and that the
necessary DNS databases be setup to resolve these addresses.
Flexibility. We desire to have an emulation platform that is capa-
ble of reproducing any botnet after the necessary reverse engineer-
ing and investigative work has been done to elucidate the structure
of the botnet command and control. Therefore, flexibility is an
important requirement. The emulation platform should be easily
configurable to adapt various overlay network topologies with for
example, variable proportions of bots with private (unroutable) IP
addresses versus bots with public IP addresses: proportions that
mirror those observed in the in-the-wild botnet.

Sterilisability. To guarantee the integrity of the experiments, vir-
tual machines (VM) need to be “sterilised” in order to remove any
artifacts associated with the malware infection. In certain cases,
this requires removal and re-installation of the VMs. Efficient mech-
anisms are therefore needed to accomplish these tasks.

2.3 Hardware and Tools

In order to meet these criteria, we used an isolated cluster as our
emulation platform. The cluster consists of 98 blades, each having
a quad-core processor, 8 Gb of RAM, dual 136 Gb SCSI disks and a
network card with 4 separate gigabit Ethernet ports. The blades are
contained in two 42U racks. The blades are interconnected with
two separate sets of switches (each in their own 42U rack) such
that two physically separated networks are created: a) a control
network used for transmitting commands and data necessary for
controlling the experiments, and b) an experiment network used
for transmitting the experiment traffic, including in this case botnet
activity (spam, C&C traffic, etc.). Having two physically separated
networks helps to guarantee the integrity of the experiment, in that,
commands and data necessary for controlling the experiment can
be sent via a separate network. This ensures that the control traffic
does not interfere with the transmission of the experiment traffic,
thus preserving the validity of timing measurements made on it.

We present a brief overview of the virtualisation and configura-
tion management tools we employed.

Virtualisation: To maximise the versatility and capability of the
emulation platform, we sought a feature rich virtualisation tech-
nology that is able to emulate both Windows and Linux. Conse-
quently, we choose the VMWare ESX product as the hypervisor for
the blades, which allows good efficiency and ease of configuration.
Configuration and management: We used the Extreme Cloud
Administration Toolkit (xCAT), an open-source tool, for config-
uring and managing the emulation platform. xCAT is particularly
attractive for this purpose since it contains VMWare functionali-
ties; for example, XCAT can create defined number of VMs with
a single command, such as, mkvm vm[001-0987, thus creating
98 VMs which are assigned names vm01, vm02, ..., vim098. From
a management point of view, XCAT operates as follows. First it
requires tables containing host configuration information, includ-
ing details such as machine template (i.e. location and name of the
ghost image), hostname, IP address, etc. These tables can be filled
manually using a text editor or they can be generated using perl
or any other scripting language. When the tables are filled, xCAT
can be issued commands causing the tables to be committed to the
xCAT database. It incorporates powerful image deployment, con-

figuration and control commands, that take the information from
the database, and use remote boot technology such as PXE or the
ESX API, to order hosts to do the required tasks. Thus, the ex-
periment design, deployment and management process for emu-
lated experiments is as follows. First, XxCAT tables must be filled
to facilitate the deployment and configuration of appropriate host
images containing ESX. Following this, the researchers produce
an abstract, high-level description of the desired environments, and
build necessary VM templates or ghost images (e.g. a VM template
for each type of bot, gateways, SMTP servers, etc.). Next, the re-
searchers decides on a network topology, addressing plan and host
naming convention. XCAT tables then need to be filled to facili-
tate the deployment and configuration of these entities (ESX hosts,
VMs, and their configurations). Depending on the size of the exper-
iment, XCAT tables can be filled manually or automatically using
scripts, regular expressions or a combination of both.

2.4 Experiment Methodology

Generally speaking in order to prepare, design and conduct an
at-scale botnet emulation experiment (some or all of) the following
steps are followed:

1. Capture of botnet client code, through various methods (hon-
eypot, collaborators, etc.).

2. Gather information on the botnet in order to understand as
much as is possible about the botnet architecture and modes
of operation. Examples of information that are required are
(i) communications protocols and message formats; (ii) au-
thentication process for gaining access to the botnet; (iii)
categories of bots and the hierarchical relationship between
them; and (iv) C& C architecture. This information can typ-
ically be obtained by reverse engineering bots and analysing
their communication traffic.

3. Passively monitoring the botnet by observing infected ma-
chines and/or joining the botnet with special purpose passive
botnet-like programmes (crawlers), in order to continue to
gain information on its structure, in particular the C&C in-
frastructure, including formats of commands, location and
characteristics of C&C servers, etc.

4. Construction of a surrogate C&C infrastructure complete with
servers and any intermediary proxies.

5. Construction of realistic operating environment for the bot-
net in the lab, including infectable/infected machines (ide-
ally showing human driven-like behaviour), ancillary net-
work services (DNS, SMTP, DHCP, etc.), a realistic emu-
lated network architecture, and, of course, counter-measures
and mitigation schemes against it.

6. Determination of metrics to be measured, based on research
questions that experiment must answer.

7. Implementation of methods for measuring these metrics and
extracting the results in usable form for further analysis.

The main challenges in following this methodology involve:
Maintaining isolation. This means both a) maintaining spatial
and logical isolation between the experimental and control com-
ponents (achieved in our setup through physical separation), and
b) maintaining isolation between the whole facility and the outside
world (security criterion). In addition, it also means time and log-
ical separation between successive experiment runs (sterilisability
criterion).

Observing without interference. This is paramount in order to
maintain the scientific soundness of the results, and also to enforce
isolation.

Simulating network characteristics and user behaviour. This is
a very hard problem that is not just relevant to botnet research. It
is essentially a modelling problem combined with significant engi-
neering issues.

3. THE WALEDAC EXPERIMENT

To exemplify this methodology, we now describe how we ap-
plied it in constituting an isolated Waledac botnet and launching
our sybil attack against it.

3.1 Overview of Waledac

Waledac is a prominent botnet which first appeared in Novem-
ber 2008, shortly after the Storm botnet became inactive. Waledac
employs a “home grown” peer-to-peer (P2P) network infrastructure
for its C&C. Other researchers and members of our group [4, 20]
had previously reversed engineered the Waledac binary and ob-
tained details about its mode of operation. Here, we will limit our
description of Waledac to the aspects relevant to the goals of this
research, i.e. disruption of its C&C through sybil attacks.

Waledac botnet uses a four layered C&C architecture. The first
layer contains bots that are referred to as spammers. These are ma-
chines with private IP addresses residing behind Network Address
Translator (NAT) devices. Spammers are essentially the “worker”
bots and constitute approximately 80% of the botnet. Their princi-
pal role is to send spam, harvest email addresses from files stored
on the infected machines, and harvest confidential information (e.g.
usernames and passwords) from the network traffic that traverses
the infected machines.

Waledac binaries are hardcoded with a list consisting of 100 to
500 contact information of repeaters. This list—which is referred
to as a RList—is stored in XML format in a registry key. An RList
has a global Unix timestamp and between 100 to 500 records that
contain the following fields: a 16-byte ID, an IP address, a port
number, and a Unix timestamp. The list is sorted in descending
order of timestamp (oldest at the top of the list). The RLists play
a key role in facilitating Waledac operations and maintaining the
P2P infrastructure, in the following ways: (i) The Rlist allows each
node to “know” a small subset of the botnet nodes. A spammer, for
example, contacts the repeaters in its RList, at frequent intervals,
and request “jobs” (i.e. tasks to perform). The repeater will in turn,
forward the job request to a protector, which will subsequently for-
ward the request to the C&C server, and relay the response (the
work order) to the repeater, which will issue the work order to the
spammer. (ii) The RList provides a means of propagating identifi-
cation information of repeaters which recently join the botnet. This
process is facilitated as follows. All bots regularly send update
messages to their known repeaters. For a bot S that wishes to send
an update message we have two possibilities: a) if S is a spam-
mer, it extracts 100 records from its RList and sends this extract to
a randomly selected repeater; and b) if S is a repeater, it selects
99 records from its RList, adds its own record (containing its iden-
tification information and the current timestamp) to the top of the
list, and sends the list to the selected repeater. When the recipi-
ent bot R receives the list, it reciprocates the process, by sending a
list containing 100 records of repeaters it knows of, back to bot S.
The recipient of an update list uses the list to update its RList, as
indicated below in Section 3.3.

In addition to an RList, each repeater also has a cryptographically-
signed protector list, containing identification information on the
protectors. The repeaters regularly exchange signed protector lists.

BOTNET
SIDE

ATTACK
SIDE

SYBIL C&C
SERVER

Figure 1: Experimental setup

The private key for signing such lists is known only to the C&C
server, and the public key certificate for verifying them is embed-
ded in the bot code. Note that it would be nonsensical to sign RLists
since any bot (even if infiltrated) must be able to provide them.
More interestingly, commands from the server are not signed ei-
ther, something that could provide some level of protection against
a sybil attack. However, the traffic between the server and the bots
is encrypted with AES-128, using a key that is chosen by the server
(and was probably meant to be a session key).

Waledac also provide a failback mechanism that allows bots to
maintain connection to the botnet even if the repeaters listed in its
RList are not reachable. The failback mechanism works as follows:
if a bot makes 10 consecutive unsuccessful attempts to contact a
repeater, the bot connects to a HTTP server (the URL for the servers
are hardcoded in the Waledac binary) and download an updated
RList. These lists are updated every 10 minutes on the server, so
that they contain the most recently “heard of” repeaters.

3.2 Waledac emulation

The overall setup and architecture for our emulation experiment
involving a contained Waledac botnet is depicted in Figure 1. The
process we employed to constitute it is as follows:

(i) Create VM templates. First, we installed the binaries on Win-
dows XP VMs and created xCat VM templates associated with
them. We created separate templates for spammer and repeaters.
(ii) Add the IP addresses of 500 repeaters to the RLists. We deleted
the entries in the original RLists, and added the identification infor-
mation of the 500 repeaters we used for the experiment.

(iit) Add script to issue commands to the VMs. We created a Python
script and added it to the VM template. This script allows us to
issue commands to the VM, for example, to start and stop execution
of the Waledac binaries, to clean the VMs, to restore the RList to
its initial state, and delete the RList dumps (see Section 3.4).

(iv) Deploy the VM templates. Next, we utilised XCAT to install the
VM templates on the blades (approximately 30 VMs per blade).
(v) Setup C&C server. Through our in-the-wild investigation of
Waledac, we were able to determine the type and the format of the

messages the C&C server sends to the bots in response to those it
receives from them. The server code is a Python script that is ca-
pable of responding to all such requests in a similar manner as the
original C&C server. For example, we observed that spam orders
issued to bots contain between 500 and 1,000 email addresses. We
mimic this functionality by creating five different spam order mes-
sages, each containing between 500 and 1,000 addresses and pro-
grammed the C&C to send them to bots requesting spam jobs. We
also implemented the failback scheme as follows: every 10 minutes
the script creates an RList containing the identification information
of the most active repeaters; this list is placed on a HTTP host. All
HTTP requests from the Waledac binaries to the hardcoded failback
domains are directed to this host. As is the case for Waledac C&C
server, our C&C server utilises 1024-bit RSA and 128-bit AES keys
to provide confidentially services for the messages the C&C server
and the bots exchange. The server runs on a VM that is the only
one to run on that blade.

(vi) Constitute the botnet. Finally, we issue commands to the VMs
to start running the Waledac binaries. We can similarly stop and
re-start the experiment at will. The botnet we constituted for our
experiment consisted of 500 repeaters, 2,300 spammer, 8 protec-
tors and the C&C server (for a total of 2,809 nodes in the botnet).
This proportion is close to that which is observed in the wild for
Waledac. It should be noted that the protectors we created are actu-
ally components of the C&C server, and not separate machines: we
assigned 8 network interfaces—each with a different IP address—
to the C&C server for this purpose. These addresses are set to be
identical to those of the real Waledac protectors. This was neces-
sary because the protectors identification information hardcoded in
the bots binaries is signed and we have no knowledge of the corre-
sponding private key.

(vii) Setup environment. In addition to the blades in the cluster, we
used standalone Linux machines to setup the ancillary infrastruc-
ture needed for the botnet to run. These standalone machines pro-
vide services, such as DNS, SMTP and DHCP, that would normally
be present in the Internet. They constitute a simple reproduction of
part of the “environment” within which the real botnet would op-
erate. These machines were of course connected to the experiment
network of the cluster.

3.3 Mitigation scheme and implementation

By reverse engineering the Waledac code and analysing its net-
work traffic, we had previously conjectured [4] that Waledac was
vulnerable to sybil attacks, due to characteristics of the home-made
P2P protocol it uses for C&C. In addition, because the IP address
of a bot needs not be unique (bots are primarily identified by their
16-byte ID), it is possible to generate large number of sybils—with
unique IDs but with the same IP address—whilst using few ma-
chines, thus making this attack relatively easy to mount.

We indicated in Section 3.1 that bots use the update messages
they receive, containing a 100-entry extract of the sender’s RList, to
update their RList. For each entry 7 in the update list, the recipient
computes a new timestamp:

NewTS; = CurrentTS — |UpdateTS — TS;|

where CurrentTS is the current timestamp, UpdateTs is the list’s
global timestamp and 7'; is the timestamp of the entry. The recip-
ient then replaces the timestamp and inserts the entry in its RList
at the correct location: recall that an RList is sorted in descending
order of timestamp. All entries beyond position 500 are deleted.
By analysing the binarires, we also discovered that Waledac bots
do not check the update lists they receive to determine if they con-
tain more than 100 records. It is therefore possible to craft special

18000 : -

16000

=
N
o
o
o

12000

10000

8000

200 targets
100 targets
4000f| &— 25 targets
eo—e (targets
-+- Attack time

6000

Number of emails send

2000

s 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
Time (hour)

(a) Spam output before and after sybil attack

Number of job requests that reach the C&C server
250

2001 ' E
\0 o . Q o o
A Q\ : .

150§

200 targets
~— 100 targets|:
+— 25 targets

Number of NOTIFY messages

50 1
e—o (targets :
-~ Attack time|:

8s0 0.95 1.00 1.05 110 1.15

Time (hour)

(b) Job requests arriving at the C&C server before and after attack

Figure 2: Botnet activities before and after sybil attack being launched.

update messages that will cause all the entries in the RLists of the
recipients to be entirely replaced by the sybil records. This can eas-
ily be accomplished by placing 500 sybil records in the update list
and set the timestamp of all the sybil entries, to a value that is iden-
tical to the list’s global timestamp. This guarantees that the NewTS
for all the sybil entries will be equal to the current timestamp; con-
sequently these 500 sybil entries will be placed at the top of the
recipient’s RList and all the others will be deleted.

The extent to which a bot can be controlled and isolated when it
receives such a message, depends on the type of bot.
If the bot is a repeater. After receiving the message from the sybil,
arace condition situation arises. Since the repeater’s identity infor-
mation is likely to be in other bots’ RLists, they are likely to send
the repeater update messages whose entries could replace some of
the sybil entries in its RLisz. To maximise the chances that the
repeater remains completely isolated, the sybils need to continue
sending update messages to the repeater at short time intervals.
If the bot is a spammer. In this case the result of the sybil attack
is more effective, since the spammer cannot be contacted directly.
When it receives an update from a sybil, and the entries in its RList
are consequently completely replaced by sybil entries, the spammer
will become completely isolated from other bots. It should be noted
though, that in order to infiltrate a spammer’s RList, the sybils first
need to infiltrate the RLists of repeaters whose identity information
are in the RList of the spammer. Also, in order to mantain isolation,
the sybils need to remain active until all the Waledac domains that
are encoded in the affected bots are disactivated, otherwise the bots
will resort to the failback mechanism we described in Section 3.1,
and download a “clean” RList from a Waledac HTTP server.

For the sybil attack implementation, we used three separate en-
tities: (a) fake repeaters (sybils), (b) attackers, and (c) a sybil C&C
server. The role of the sybils is to passively respond to update
messages—sent to sybils—with responses containing the specially
crafted update message we described above, whereas the attackers’
role is to target specified numbers of repeaters and send them the
specially crafted update messages. The records in the update mes-
sages all contain sybil ID information. The attackers send these
messages to the targeted repeaters once every minute. This rate was
utilised because we observed that the Waledac bots in-the-wild send
between 2 to 5 update messages during a two-minute time period.
The role of the sybil C&C server is to prevent the “turned” bots
from resorting to the failback mechanism. We indicated in Sec-

tion 3.1 that if a bot makes 10 consecutive unsuccessful attempts
to contact repeaters, the bot will connect to a Waledac Web server
and download an updated RList. In order to prevent this from hap-
pening, the sybils are programmed to relay all messages from the
turned bots to the sybil C&C server. The sybil C&C server will
in turn send harmless spam orders to the turned bots. We use the
following feature of Waledac to issue these harmless orders: spam-
mers are supplied with a special SMTP server IP address that they
are required to use to test if they are capable of sending spams. Be-
fore sending spam, spammer try to connect to this special SMTP
server and send spam only if they succeed. We therefore send the
bots the address for an “SMTP server” that is unreachable. In so
doing, we can ensure that the bots the sybils control, do not send
spam.

We employed three VM to host the sybils, one VM to launch the
attackers and another VM to run the sybil C&C server.

3.4 Experiment results

We utilised the following metrics for assessing the effectiveness
of the sybil attack mitigation scheme.
Spam output. We measure the spam output of the botnet, over a
fixed time period, before and after we launch the attack. To facil-
itate spam output measurement, we programmed our botnet C&C
server to send spam orders with email addresses belonging to the
same domain. This allows us to more easily count the number of
spam sent by counting DNS requests to that domain.
Connectivity of the botnet. In order to determine the extent to
which the sybil attack affects the connectivity of the botnet, we
measure the number of NOTIFY messages the C&C server receives
over a fixed time period, before and after we launch the attack.
NOTIFY messages are the second message that a bot sends when it
dialogues with the C&C server. Counting only NOTIFY messages
allows us to filter out noise due to failed connection requests.
Percentage of sybils in RList. The goal of the attack is to replace
the entries in RLists with sybil records, which will utlimately iso-
late the bots. This parameter is thus an intermediary indicator of
effectiveness. We measure it by way of a Python running on the
bots, that dumps RList to a file each time it is modified, and send
these files to an FTP server via the control network. We then anal-
yse these files to determine the percentages of sybils in the RList.

In addition to measuring the above metrics, we also wish to de-
termine the degree of success of the attack when subsets of known

RList infections for the Repeaters

100 — <~
w80 . 1
] '

(o)}
8
e
O 60 1
e
(]
=
s Y 1
g +—e 200 targets
€ 20l +—~ 100 targets| |
*+— 25 targets
--- Attack time
95 0.7 0.8 0.9 10 1.1

Time (hours)

(a) Percentage RList infection for all repeaters

RList infections for the target Repeaters

100 : s
w 80f ']
(V] "
(o)}
8
C
U 60f 1
=4
[}
e
s 1
‘g ~— 200 targets
c 2ok +— 100 targets ||
+—e 25 targets
--- Attack time
96 0.7 0.8 0.9 10 1.1

Time (hours)

(b) Percentage RList infection for targeted repeaters

Figure 3: Percentage RList infections by sybils.

repeaters are targeted, vice targeting all known repeaters. We con-
sequently performed 3 sets of experiments, targeting 200, 100 and
25 repeaters, respectively.

The first set of experiments was used to benchmark the botnet.
We performed 3 experiment runs; for each run, we allow the bot-
net activities to reach a steady state, then we measure spam output
and botnet connectivity. The average values—for the 3 experiment
runs—for these measures were 13,200 emails per minutes and 120
NOTIFY messages per minute, respectively.

The next set of experiments assessed the efficacy of the sybil
attack by determining the steady state values of the above metrics,
before and after the attack begins. We performed 3 experiment runs
for each set of experiments and compute the average values for the
the runs. As indicated in Table 1, the standard deviation values
obtained are relatively small, and we therefore believe that these
results are statistically significant.

Figure 2(a) shows the spam output of the botnet before and after
the sybil attack begins. The dotted vertical line indicates the time
that the attack begins. The graph shows that the attack is a success
and that the spam output drastically falls after less than an hour.
We also observe that after the sybil attack begins, there is an initial
decrease in the spam output, with a subsequent gradual return to its
original level, and even rising significantly above it, before the final
fall. Furthermore, we can see that the time taken to reach the final
fall is longer with 200 and 100 targets than it is with 25, which is
also not so intuitive.

We think the main cause of these two surprising and interesting
effects is the load on the C&C servers, both the sybil and the ma-
licious one. The C&C servers are overloaded and cannot keep up
with the computing time required for cryptographic operations. As
mentioned in [4], the Waledac botnet uses RSA with 1024 bits key-
pairs and AES-128. Through our observation of the Waledac botnet
in-the-wild, we discovered that the C&C server used the same AES
session key for all bots, for approximately 10 months. We initially
thought that this was a design error made by the botnet creators, but
when implementing the Waledac C&C server we discovered that it
was not impossible to generate a session key for each bot, because
it overloads the server with cryptographic computation. Waledac
bots are too verbose and if a good availability of the C&C server
is desired, there is no choice but to keep the same session key for
all active connections (at least for several minutes) and give bots
the same set of encrypted orders. Hence it is likely that this was no

mistake, but rather a conscious design choice by Waledac creators.

However, as the sybil attack progresses, the sybil C&C server has
fewer cryptographic operations to perform because we use exactly
the same strategy as the Waledac C&C server in-the-wild: we use
the same session key and pre-encrypt the work orders in batch mode
before they need to be sent. Thus as the attack progresses the sybil
C&C server availability does not decrease too significantly since it
does not have to encrypt any orders, hence allowing it to control an
increasing number of bots, and adequately handle their requests.

It is important to note that there is a delay between the moment
we completely infect a spammer’s RList and the moment it stops
sending spam: a bot will not contact the C&C server until it has
finished its current task.

As the attack progresses and we gain a hold within the botnet,
we decrease the load on the real C&C server, which becomes more
available for the non-poisoned bots. Thus, these bots receive orders
every time they ask (which is not a normal situation, even in-the-
wild) and continue to spam in a more efficient way than in a normal
state. During that short interim time period, the botnet is more
efficient under attack than in its normal state. It should be noted
that if we had given more resources to the C&C server to start with,
this effect would probably be less important, but as we attributed
4 processors and 8 Gb RAM for its VM, we think it is realistic to
assume that this effect would also be observed in-the-wild.

Figure 2(b) shows the number of NOTIFY messages the C&C
server receives before and after the sybil attack begins. The num-
ber of NOTIFY messages the C&C server receives is essentially
a measure of the connectivity of the botnet. The figure indicates
that, as expected, there was a gradual decrease in the number of
messages that arrive at the C&C server, after the sybil attack com-
mences. After the attack begins, the more efficient attack is the one
with 25 targets. This is also a consequence of the load on the sybil
C&C server. Because it is overwhelmed with the more aggressive
attacks, it refuses connections. After a transition period, the 100
and 200 targets attacks become eventually more effective as the
sybil C&C server has fewer cryptographic computation to perform.

Figure 3(a) shows the percentage of sybils entries in all repeaters
RList (targets and non-targets). After an initial transitory phase
where the more aggressive attacks (more targets) seem more effi-
cient, we reach a stage of equivalent linear growth in the number of
sybil-controlled machines in the RLists, This is due to the fact that
propagation of sybil records in the RList of non-sybil, non-targeted

bots is dependent on the rate of RList updates between non-targeted
real bots, which is the same for all attacks.

Figure 3(b) shows the percentage of poisoning on the targeted
repeaters only. We can observe that it is quicker to fully control
25 direct targets than 100 or 200, because of the race condition
faced by these direct targets: the more bots we target, the higher
the chance that we lose some races and have sybil records replaced
by real ones.

4. DISCUSSION

As previously discussed, at-scale botnet emulation in the lab dis-
plays several advantages with respect to other analysis methods.
The Waledac experiments that we have conducted exemplifies the
viability of this approach and provides clear indications of some of
these advantages.

First, we were able to assess the efficacy of the mitigation scheme
directly by measuring the following three parameters: (i) the num-
ber of NOTIFY messages arriving at the C&C server within a given
time period, (ii) the number of spam sent within a given time pe-
riod; and (iii) the penetration ratio of sybil identification within the
bots peer lists (RLists). These parameters provide the most effec-
tive means of measuring the connectivity and productivity of the
botnet. Whereas we were easily able to measure these parameters
via such botnet emulation experiments, the value of these parame-
ters are virtually impossible to ascertain—particularly items (i) and
(iii)—via in-the-wild botnet studies.

Second, we were able to address and answer questions about at-
tack optimisation. In particular, in our attack the role of fake re-
peaters (the sybils) is to target a specified subset of repeaters by
sending them specially crafted update messages. An important
question that needed to be answered regarding the implementation
of the mitigation scheme is, what is the ideal number of repeaters to
target? It is very difficult to design in-the-wild botnet experiments
to find answer to this question. Moreover, even if it were possible
to do so, these experiments would likely take several weeks or even
months to complete, whereas botnet emulation experiments supply
the answer to this question within a few hours.

Moreover, some of the experiment results seem counter-intuitive.
They indicate, for example, that targeting higher number of re-
peaters does not necessarily cause the efficacy of the mitigation
scheme to increase. By performing the experiment multiple times
and observing the same trend, it became clear that the larger the
number of repeaters that are targeted, the more update requests will
be sent to the fake repeaters (sybils) that respond to update mes-
sages sent to sybils; and if the number of update messages sent to
the sybils increase beyond a given threshold, many of these mes-
sages will be dropped and consequently will not be serviced. This
leads to higher number of repeaters that are under the control of the
sybils resorting to the failback mechanism (as outlined in Section
3.1) and download “clean” RList, and in so doing, breaking free of
the control of the sybils. Becoming aware of this fact is important
for a couple of reasons. Firstly, it provides pointers as to how the
mitigation scheme can be made more stealthy, since in targeting
smaller number of repeaters it is likely that the probability of the
botnet operators detecting the presence of the counter-botnet agents
in the botnet will decrease. Secondly, this awareness provides in-
dicators as to how the counter-botnet agents can allocate their re-
sources to maximise the efficacy of the counter-botnet operations.
In essence, we were able to discover this phenomenon (repeaters
re-joining the real botnet because of sybil overload) by running an
at-scale botnet emulation experiment where we could observe and
note the behaviour of bot clients. Again, it would have been very
difficult to notice this by passive in-the-wild botnet observation,

unless researchers have machines that join the botnet and play an
active role in them (i.e. send spam and support criminal activities),
something that many would consider dangerous and questionable.
Thus, this constitutes a third example of why at-scale botnet emu-
lation are a necessary tool in botnet research.

Since fake repeaters responding to update messages sent to tar-
geted repeaters were easily overloaded, we can deduce that this
task requires more resources than the attackers, whose role it is to
send specially crafted update messages to the targeted repeaters in
order to place fake repeaters in their RLisz. We did not directly
address the question of what would have been the optimal value
for the ratio of fake repeaters to attackers, i.e. how to best allocate
sybil machines to these roles. However, by running the experiments
multiple times, it became clear that the resources we allocated for
responding to update messages sent to the fake repeaters were in-
adequate, since large number of messages that were addressed to
the fake repeaters were dropped, simply because the service queue
was being filled. Whereas this observation could also have been
made via in-the-wild botnet experiments, it is much easier to verify
via in-lab experiments such as this.

Finally, the last example has nothing to do not with the attack,
but rather with the botnet and the botmasters themselves. By not
only directly observing the bot clients but also the reconstructed
botnet C&C server, we were able to “wear the shoes” of the bot-
master and were thus able to identify some of the performance and
design challenges that botnet creators and botmasters must face. In
particular, what would have been a textbook solution to ensure data
confidentiality and integrity, i.e. the use of unique symmetric keys
for each session between a bot and the C&C server, turned out to
be non viable due to the size of the botnet. Without at-scale exper-
imentation in the scale of several thousand bots, we would never
have discovered this fact. This illustrates that, surprising to some
(including some of us!), one can indeed learn a lot about the bad
guys even in the lab. In other words, field work is not by itself the
end-all of botnet and cyber criminality research.

5. CONCLUSIONS

In this paper we presented an alternative approach for conducting
botnet research: at-scale botnet emulation in laboratory conditions.
We have discussed its generic advantages with respect to other ap-
proaches like analytical modelling, simulation studies, and in-the-
wild botnet experimentation. In a nutshell, it provides a greater
verifiable realism than analytical models, simulation methods or
small-scale emulations, while providing greater levels of control
and safety, and presenting fewer ethical and legal problems than
in-the-wild experimentation.

In order to deliver such advantages, however, botnet emulations
must be run on platforms or testbeds that meet certain criteria. We
have postulated and described such necessary criteria. Namely: i)
security, to mitigate risks of accidental or unauthorised release of
botnet code or information about them; ii) scalability, in order to
be able to emulate botnets of large enough size so that similar phe-
nomena as those in a real botnet can be observed; iii) realism, for
the same reason; iv) flexibility, so that experiments can easily be re-
peated, under varying controlled conditions and for different types
of botnets and/or mitigation schemes, and v) sterilisability, so that
results from previous experiments do not affect that of future ones.

Using the isolated security testbeds based on virtualisation [5],
we were able to mount a set of at-scale emulation experiments of
the Waledac botnet involving close to 3,000 bots. The controlled
conditions of the lab and the full visibility on the botnet and the
ancillary infrastructure (the botnet’s “operating environment”) al-
lowed us to measure performance metrics for both the botnet and

(a) Average (30 min period before attack) and Std deviation values for spam output

Experiment| Average Standard deviation for the spam output each 2 minutes after the start of the attack
25 targets 13219 403.27] 389.29] 102.75] 149.51] 101.22] 528.81] 182.02] 121.48] 211.20] 230.79] 274.75| 169.00] 445.75] 325.85 395.44
100 targets 13433 180.07| 546.72| 195.69| 327.22| 22.61 | 326.74 271.37| 250.24| 339.77| 338.79| 511.07| 187.33] 171.66| 315.68| 462.08|
200 targets | 13582 506.29] 348.47| 144.76| 312.90] 769.54| 56.01 | 493.12| 239.83| 450.14] 160.21| 662.21| 378.59| 154.85 406.08| 562.96|
(b) Average (30 min period before attack) and Std deviation values for job request reaching the C&C
[Experiment] Average | Standard deviation for the number of job requests that reach the C&C server |
25 targets 185 2333 | 19.09 | 7.78 3.54 1.41 0.71 7.78 5.66 4.95 0.71 0.71 1.41 0.71 0.00 0.00
100 targets | 176 19.22] 39.59 | 21.63 | 5.03 2.52 3.00 6.03 0.00 0.58 0.00 0.58 0.58 0.00 0.00 0.58
200 targets 172 2570 | 12.22 | 5.51 10.02 | 16.07 | 4.58 7.00 2.31 4.04 1.73 0.58 0.58 0.00 0.00 0.58
(c) Std deviation values for percentage RList infection for all the repeaters

Experiment Standard deviation for percentages of RList infection each 2 minutes during the transition state

25 targets 0.00 1.00 2.52 0.58 2.31 2.31 1.53 2.65 2.65 0.00 0.58 0.58 0.00 0.00 0.00

100 targets | 0.00 0.50 0.82 222 1.50 2.38 1.63 2.63 2.00 1.26 1.00 0.50 0.00 0.00 0.00

200 targets | 0.00 1.65 2.08 1.73 1.53 5.00 0.58 2.08 2.65 1.73 1.00 0.58 0.00 0.00 0.58

(d) Std deviation values for percentage RList infection for the target repeaters
[Experiment] Standard deviation for percentages of RLis infection each 2 minutes during the transition state |

25 targets 0.00 1.97 2.90 0.71 0.71 1.54 0.00 2.83 0.00 2.83 0.00 2.12 2.12 0.00 1.41

100 targets | 0.00 1.53 0.58 2.00 0.58 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

200 targets | 0.00 4.78 3.49 2.87 2.36 2.12 0.00 0.00 0.00 0.00 1.24 1.83 0.00 0.00 0.71

Table 1: Standard deviation values for the experiment runs

attacks agains it that would have been very hard to measure in in-
the-wild botnet, such as i) spam yield (i.e. number of spams per
minute sent by the bots), ii) botnet activity (i.e. number of NOTIFY
messages per minute), and iii) penetration of sybils into the botnet
(i.e. percentage of sybils in bot peer lists). The results obtained
by measurement of these quantities can be summarised as follows.
With respect to the efficacy and viability of the sybil attack, we can
conclude that:

1. The sybil attack as implemented is indeed effective and a-
chieves full disruption within an hour.

2. Workload on the sybil C&C server is an important factor to
consider, as it creates a transient “window of detection” that
could allow the botmaster to detect the attack before he com-
pletely loses control of the botnet.

3. It is not necessary to poison the RList of all or even many
repeaters for the attack to succeed. In fact, targeting smaller
numbers of repeaters (as few as 5% of them) yields essen-
tially the same disruption results as wider attacks (targeting
up to 40% of the repeaters), while somewhat mitigating the
workload problem of the sybil attack C&C server.

With respect to the actual botnet, we were able to deduce the fol-
lowing facts from our results:

4. Workload on the actual C&C server is also a problem. We
suspect that this is the real reason why common session keys
started to be used 10 months into the botnet deployment, and
not due to a programming or design mistake, as was initially
suspected. This is also the probable reason why server com-
mands are not signed.

It is very important to note that it would have been very difficult,
and in some cases impossible, to reach these same conclusions by
resorting to other methods of botnet analysis. While the efficacy
of the sybil attack on the real botnet could have been measured by
continuous monitoring the attacked botnet, it is unlikely that the at-
tack designer would have had a chance to run several experiments

to find out that limited targeted attacks are a better option. In addi-
tion, and as mentioned above, testing counter-measures in-the-wild
could bave several negative side-effects (retaliation, premature dis-
closure of mitigation strategies, premature beginning of an arms
race, etc.) that could easily outweigh the benefits of such research.
In addition, without running an actual C&C server in the lab for an
at-scale reproduction of the botnet, it would not have been possible
to confirm that the design choices made by the botnet creators were
due to performance issues. This cannot be deduced from real-world
botnet observation, unless one has gained access to the actual C&C
server, a very unlikely proposition.

Thus, we hope to have made a strong case for the use of at-scale
botnet emulation as a fundamental tool in botnet research, comple-
mentary at least, and superior in many respects to other botnet and
counter-measure study techniques. Nonetheless, there are some im-
portant limitations to this approach.

First, they require access to testing facilities that meet the above-
mentioned criteria; this is unfortunately not the case today for many
good and well-established botnet researchers. National and inter-
national collaborative efforts like those in which the authors are
involved, or the US DETER project are one way to address this.
However, even though it is understandable that actual usage of the
facilities might be restricted, more collaboration and sharing of pro-
cedures, tools and standards would greatly benefit the community
as a whole and encourage researchers and research funders to fol-
low that path.

Second, while we were very careful in the fidelity of the botnet
emulation portion of our experimental setup, the emulation of the
operating environment of the botnet is somewhat simplistic. As-
pects of the environment that can be included in that category are:
1) a more realistic model and emulation of the Internet (includ-
ing Layer 3 and below characteristics such as topology, latency,
adressing, etc.) as it interconnects the bots, the C&C server and
the ancillary infrastructure, ii) a more realistic model describing
the natural oscillations in botnet population —also referred to as
churn or birth-death process— due to user action such as infec-
tion/disinfection, powering on and off, diurnal usage patterns, etc.

Internet networks and user modelling is another field of research
all on its own, and a very hard one at that. Nonetheless, we are
currently working on ways to easily and transparently port and im-
plement such given models to our security testbeds, which would
allow us to test the impact of changes in network configuration and
user behaviour on botnet and counter-measure efficacy. This, we
hope, will lead to very fruitful research, as we, the good guys, do
in principle control the network and can positively affect user be-
haviour through education or regulation.

Finally, none of our experiments emulate the behaviour of an im-
portant part of the botnet: the botmaster, who deploys and operates
the botnet and that has, in principle, clearly defined objectives for
doing so (e.g. profit). While it is not as easy to capture the “bot-
master code” into the lab as it was for the bot code itself, it would
be relatively easy to adapt our botnet emulation to allow for inter-
active “gaming” of a botmaster vs. botnet attacker scenario, where
both are played by security researchers in real time or off-line by
surrogate “game” engines that play out pre-defined strategies. This
approach would allow us to quantify the typical payoff matrices
that are used in game theory to try to predict the ultimate outcome
of such scenarios.

Acknowledgments

This research was partially funded by Canada’s Natural Sciences
and Engineering Research Council (NSERC) strategic research net-
work on Internetworked System Security Network (ISSNet). We
are also very grateful for the valuable input and feedback we re-

ceived from Patrick McDaniel on previous versions of this manuscript.

6. REFERENCES

[1] P. Barford and M. Blodgett. Toward botnet mesocosms. In
Proc. 1° Work. on Hot Topics in Understanding Botnets
(HotBots), Apr. 2007.

T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph,

K. Sklower, R. Ostrenga, and S. Schwab. Experience with
DETER: A testbed for security research. In Proc. IEEE Conf.
on Testbeds and Research Infrastructures for the Dev. of
Networks and Communities (TridentCom), Mar. 2006.

P.-M. Bureau and J. Fernandez. Optimising networks against
malware. In Proc. Int. Swarm Intelligence and Other Forms
of Malware Work. (MALWARE), Apr. 2007.

J. Calvet, C. Davis, and P.-M. Bureau. Malware authors don’t
learn, and that’s good! In Proc. Int. Conf. on Malicious and
Unwanted Software (MALWARE), Oct. 2009.

J. Calvet, C. Davis, J. Fernandez, W. Guizani,

M. Kaczmarek, J.-Y. Marion, and P.-L. St-Onge. Isolated
virtualised clusters: testbeds for high-security
experimentation and training. In Proc. 3"¢ USENIX Work. on
Cyber Sec. Experimentation and Test (CSET), Aug. 2010.

E. Cooke, F. Jahanian, and D. McPherson. The zombie
roundup: Understanding, detecting, and disrupting botnets.
In Proc. Work. on Steps to Reducing Unwanted Traffic on the
Internet (SRUTI), July 2005.

D. Dagon, G.Gu, C.Zou, J. Grizzard, S. Dwivedi, W. Lee,
and R. Lipton. A taxonomy of botnets. In Proc. of CAIDA
DNS-OARC Work., July 2005.

D. Dagon, C. Zou, and W. Lee. Modeling botnet propagation
using time zones. In Proc. 13" Network and Distributed
System Security Symp. (NDSS), Feb. 2006.

C. Davis, J. Fernandez, and S. Neville. Optimising sybil
attacks against P2P-based botnets. Proc. 4" Int. Conf. on

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

Malicious and Unwanted Software (MALWARE), Oct. 2009.
C. Davis, J. Fernandez, S. Neville, and J. McHugh. Sybil
attacks as a mitigation strategy against the storm botnet. In
Proc. 3™ Int. Conf. on Malicious and Unwanted Software
(MALWARE), Oct. 2008.

C. Davis, S. Neville, J. Fernandez, J.-M. Robert, and

J. McHugh. Structured peer-to-peer overlay networks: Ideal
botnets command and control infrastructures? In Proc. 13"
European Symp. on Research in Computer Security
(ESORICS), Oct. 2008.

S. Gaudin. Storm botnet puts up defenses and starts attacking
back. http://informationweek.com, Aug. 2007.
A. Jackson, D. Lapsley, C. Jones, M. Zatko, C. Golubitsky,
and W. Strayer. Slingbot: A system for live investigation of
next generation botnets. In Proc. of IEEE Conf. for
Homeland Security, Cybersecurity Applications and
Technology (CATCH °09), Mar. 2009.

J. John, A. Moshchuk, S. Gribble, and A. Krishnamurthy.
Studying spamming botnets using botlab. In Proc. 6"
USENIX Symp. on Networked Systems Designs and
Implementation (NSDI), Apr. 2009.

C. Kanich, C. Kreibich, K. Levchenko, B. Enright,

G. Voelker, V. Paxson, and S. Savage. Spamalytics: an
empirical analysis of spam marketing conversion. In Proc.
15" ACM Conf. Comp. & Comm. Security (CCS), Oct. 2008.
C. Kanich, K. Levchenko, B. Enright, G. Voelker, and

S. Savage. The Heisenbot uncertainty problem: Challenges
in separating bots from chaff. In Proc. 15* USENIX Work.
Large-Scale Exploits & Emergent Threats (LEET), Apr.
2008.

L. Peterson and T. Roscoe. The design principles of
PlanetLab. ACM SIGOPS Operating Systems Review,
40:11-16, Jan. 2006.

M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A
multifaceted approach to understanding the botnet
phenomenon. In Proc. 62" ACM SIGCOMM Conf- on
Internet measurement (IMC), Oct. 2006.

E. Ruitenbeek and W. Sanders. Modeling peer-to-peer
botnets. In Proc. 5" Int. Conf. on Quantitative Evaluation of
Systems (QuEST), pages 307-316, Sept. 2008.

G. Sinclair, C. Nunnery, and B. Kang. The Waledac protocol:
The how and why. In Proc. 4" Int. Conf. on Malicious and
Unwanted Software (MALWARE), Oct. 2009.

J. Stewart. Storm worm DDoS attack.
http://www.secureworks.com/research/
threats/storm-worm, Feb. 2007.

B. Stock, J. Goebel, M. Engelberth, F. Freiling, and T. Holz.
Walowdac analysis of a peer-to-peer botnet. In Proc. Europ.
Conf. Computer Network Defense (EC2ND), Nov. 2009.

P. Wang, S. Sparks, and C. C. Zou. An advanced hybrid
peer-to-peer botnet. In Proc. 1% Work. on Hot Topics in
Understanding Botnets (HotBots), Apr. 2007.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. In Proc. of 5" Symp. on Operating systems
design and implementation (OSDI), pages 255-270, 2002.
Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum.
Botgraph: Large scale spamming botnet detection. In Proc.
6" USENIX Symp. on Networked Systems Designs and
Implementation (NSDI), 2009.

