589,948 research outputs found

    Reduced Switching Connectivity for Large Scale Antenna Selection

    Get PDF
    In this paper, we explore reduced-connectivity radio frequency (RF) switching networks for reducing the analog hardware complexity and switching power losses in antenna selection (AS) systems. In particular, we analyze different hardware architectures for implementing the RF switching matrices required in AS designs with a reduced number of RF chains. We explicitly show that fully-flexible switching matrices, which facilitate the selection of any possible subset of antennas and attain the maximum theoretical sum rates of AS, present numerous drawbacks such as the introduction of significant insertion losses, particularly pronounced in massive multiple-input multiple-output (MIMO) systems. Since these disadvantages make fully-flexible switching suboptimal in the energy efficiency sense, we further consider partially-connected switching networks as an alternative switching architecture with reduced hardware complexity, which we characterize in this work. In this context, we also analyze the impact of reduced switching connectivity on the analog hardware and digital signal processing of AS schemes that rely on channel power information. Overall, the analytical and simulation results shown in this paper demonstrate that partially-connected switching maximizes the energy efficiency of massive MIMO systems for a reduced number of RF chains, while fully-flexible switching offers sub-optimal energy efficiency benefits due to its significant switching power losses.Comment: 14 pages, 11 figure

    Fingerprinting Hysteresis

    Full text link
    We test the predictive power of first-oder reversal curve (FORC) diagrams using simulations of random magnets. In particular, we compute a histogram of the switching fields of the underlying microscopic switching units along the major hysteresis loop, and compare to the corresponding FORC diagram. We find qualitative agreement between the switching-field histogram and the FORC diagram, yet differences are noticeable. We discuss possible sources for these differences and present results for frustrated systems where the discrepancies are more pronounced.Comment: 4 pages, 5 figure

    Frequency Switching for Simultaneous Wireless Information and Power Transfer

    Full text link
    A new frequency switching receiver structure is proposed for simultaneous wireless information and power transfer in multi-carrier communication systems. Each subcarrier is switched to either the energy harvesting unit or the information decoding unit, according to the optimal subcarrier allocation. To implement the system, one-bit feedback is required for each subcarrier. Two optimization problems are defined, converted to binary knapsack problems, and solved using dynamic programming approaches. Upper bounds are obtained using continuous relaxations. Power allocation is integrated to further increase the performance. Numerical studies show that the proposed frequency switching based model is better than existing models in a wide range of parameters

    Advanced electrical power, distribution and control for the Space Transportation System

    Get PDF
    High frequency power distribution and management is a technology ready state of development. As such, a system employs the fewest power conversion steps, and employs zero current switching for those steps. It results in the most efficiency, and lowest total parts system count when equivalent systems are compared. The operating voltage and frequency are application specific trade off parameters. However, a 20 kHz Hertz system is suitable for wide range systems
    corecore