2 research outputs found

    Improvement of a Propagation Delay Model for CMOS Digital Logic Circuits

    Get PDF
    Propagation delay models, for CMOS Digital Circuits, provide an initial design solution for Integrated Circuits. Resources, both monetary and manpower, constrain the design process, leading to the need for a more accurate entry point further along in the design cycle. By verifying an existing propagation delay method, and its resulting delay model, calibration for any given process technology can be achieved. Literature reviews and detailed analysis of each step in the model development allow for greater understanding of each contributing parameter, and ultimately, adjustments to the model calibration result in a more accurate analytical model. An existing model was verified and improved upon using TSMC 0.18um and IBM 0.13um SPICE decks, and the resulting improvements can be used to further assist individuals needing a method and model for deriving an initial circuit design solution for integrated circuits

    Switching Response Modeling of the CMOS Inverter for Sub-micron Devices

    No full text
    In this paper an accurate, analytical model for the evaluation of the CMOS inverter delay in the sub-micron regime, is presented. A detailed analysis of the inverter operation is provided which results to accurate expressions describing the output waveform. These analytical expressions are valid for all the inverter operation regions and input waveform slopes. They take into account the influences of the short-circuit current during switching, and the gate-to-drain coupling capacitance. The presented model shows clearly the influence of the inverter design characteristics, the load capacitance, and the slope of the input waveform driving the inverter on the propagation delay. The results are in excellent agreement with SPICE simulations
    corecore