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ABSTRACT 

 

IMPROVEMENT OF A PROPAGATION DELAY MODEL FOR CMOS DIGITAL 

LOGIC CIRCUITS 

  

 

by Rodger Lawrence Stamness 

 

 Propagation delay models, for CMOS Digital Circuits, provide an initial design 

solution for Integrated Circuits.  Resources, both monetary and manpower, constrain the 

design process, leading to the need for a more accurate entry point further along in the 

design cycle. By verifying an existing propagation delay method, and its resulting delay 

model, calibration for any given process technology can be achieved.  Literature reviews 

and detailed analysis of each step in the model development allow for greater 

understanding of each contributing parameter, and ultimately, adjustments to the model 

calibration result in a more accurate analytical model.  An existing model was verified 

and improved upon using TSMC 0.18um and IBM 0.13um SPICE decks, and the 

resulting improvements can be used to further assist individuals needing a method and 

model for deriving an initial circuit design solution for integrated circuits. 
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CHAPTER ONE  
INTRODUCTION 

 

 Propagation delay models for CMOS digital logic can enable circuit 

designers to rapidly produce accurate initial circuit designs without the 

exhaustive efforts required of analyzing every transistor of each logic gate 

individually.  Propagation delay models (PDMs) offer a cost-effective balance 

between two vastly different methods of circuit design.  At one extreme is the 

analytical derivation of every element within a given design, accounting for 

second and third order effects.  These results are extraordinarily accurate and 

even more extraordinarily resource intensive process.  The other extreme is the 

implementation of digital architecture with only logical function and no timing 

based circuit design, resulting in the fastest possible design time.  The first 

method is prohibitively expensive, and extraordinarily accurate, and the second 

method is relatively inexpensive, and inaccurate.  Between full analysis without 

simulation and no analysis with exhaustive simulation exists the intermediate 

domain of PDMs. 

 Circuit design describes the stage between a circuit’s logical definition and 

physical implementation.  A logical definition is “synthesized” converted into an 

array of CMOS logic gates that represent the circuit’s logical function.  Gate 

placement and connectivity provide the designer with a close approximation of 

the timing problems the circuit will need to overcome.  Metal-oxide-

semiconductor field-effect-transistor (MOSFET) sizing controls the speed of a 



 2 

given logic block increasing transistor width produces increased speed and 

reducing size produces reduced speed. 

 Every logic block is dependent upon the speed of its input and the load of 

its output.  Circuit design complexity comes from the interdependence of the 

individual logic blocks within a design.  If one block is grown to speed up its 

timing, the block driving it sees an increase in load and subsequently slows 

down.  Upsizing the previous stage can propagate the issue all the way to the 

first input of the entire circuit.  Circuits can have thousands of initial timing issues 

that would lead to gross over-corrections if not addressed properly.  This is 

where the use of a propagation delay models can provide significant help. 

 A propagation delay model provides the circuit designer with a close 

approximation of a circuit’s final device size.  A propagation delay model can help 

the designer avoid numerous iterations of device sizing and testing required by 

an improperly chosen initial device-sizing scheme.  The accuracy and complexity 

of a PDM varies based on the individual requirements of the designer.  Simple 

designs can use less intricate PDMs while designs with greater complexity 

require PDMs with greater complexity. 

 This thesis is based on improvements to methods presented by Baum [1] 

in an earlier San Jose State University College of Engineering thesis.  The 

published work from Baum [1] is based on the analytical propagation delay 

models presented in the engineering textbook by Kang and Leblebici [2].  This 

thesis is the second sequential work to verify and improve upon the analytical 
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propagation delay equations from Kang and Leblebici [2].  Research resources 

for propagation-delay modeling exist in great abundance in the literature [1-15, 

17-26, 28-31].  Choosing a reliable source for citation can be a daunting task 

because few bodies of work provide exhaustive evidence to substantiate their 

results.  The need for independent verification is the catalyst for this thesis.  

Verification of existing work will confirm the methods and results presented in 

addition to serving as a valuable recourse to anyone looking for further research 

in the same field of study.  

 The process for building a propagation delay model is based on 

developing an understanding of common behaviors and effects for a given 

technology and translating those effects into a reproducible system for rapid 

analysis.  The focus thesis [1] adapts a well-known analytical delay model 

[Equation 1], and simulation results to calibrate the original model with fitting 

coefficients.  The resulting model accounts for second order effects omitted from 

the original analytical model.  The calibrated model offers an alternative to 

rigorous and extensive circuit analysis, by trading accuracy for rapid design 

acquisition. 

 This thesis provides practical knowledge to an audience ranging from 

senior-level electrical engineering students, to an experienced (1-5 year) circuit 

design engineer.  This paper also provides research-support to existing PDMs by 

verifying accuracy of published results [1-4].  Lastly, this work presents three 

areas of accuracy-improvements to existing PDMs. 
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 The method and analytical models presented in this thesis are targeted for 

individuals, or small groups, designing a full custom, high-speed, CMOS, digital 

integrated circuit, with architectural specifications for small a relatively small 

fanout (typically less than a fanout of four).  PDMs are typically designed for a 

single IC manufacturing technology the content herein can be used to calibrate 

PDMs for any IC manufacturing process. The method presented in this thesis 

can be tailored to improve timing accuracy, at a relatively small cost in effort, by 

applying more stringent modeling-constraints and boundary-conditions. 
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CHAPTER TWO 
BASIC THEORY AND DEFINITIONS  

 

 Understanding the concepts throughout this thesis depends upon 

familiarity with terminology herein.  The following terms and definitions are 

provided to supplement readers less familiar with fundamental elements of digital 

circuit design.  The definitions below pertain to the scope of this thesis. 

 

Body effect and body biasing:  The degradation of a transistors performance  

  due to the transistors threshold voltage increasing. The body of a  

  transistor can be, intentionally or unintentionally, moved from the  

  typical supply voltage.  Under this effect, the electrical   

  characteristics of the transistor no longer conform to the ideal  

  device behavior.  

 

Capacitance: Units: Farads (F).  The amount of stored electrical charge  

  between two electrically aware pieces of material.  Capacitors are  

  used as output loads to CMOS circuits to simulate the effects that  

  would be encountered for driving different circuits at the output. 

 

Channel Length Modulation: The shortening of the length of a transistors  

  inverted channel region with increase in drain bias for large drain  

  biases.  The channel decrease causes greater current flow. 

 

CMOS: (Complimentary Metal Oxide Semiconductor) Within this text  

  describes the use of complimentary transistors for use in digital  

  circuit design. Every transistor that is activated with a logical “1”  
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  (high-voltage or VDD) has a corresponding transistor that is   

  activated with a logical “0” (low-voltage or ground). 

 

Current: Unit: Amperes (A).  The amount of electron flow through a   

  conductive media. 

 

Delay/Propagation Delay/Skew:  The measurement of a CMOS digital gate  

  delay from the time the input terminal transitions across one-half  

  the supply voltage (VDD), until the output of the digital device   

  responds, transitioning across VDD. 

 

 

Figure 1.  Propagation delay measurement of standard inverter. 

 

Die:  The term used to designate a single integrated circuit (IC) boundary 

  on a manufacturing wafer.  A wafer may contain 10’s to 100’s of  

  individual dies, with every die being a replication (for large volume  

  production) or completely unique (in the case of research and small 

  volume manufacture). 
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Digital Design:  In this text, refers to the (1’s and 0’s) of a circuit’s logical   

  behavior.  Logical devices common to digital design include, but are 

  not limited to; Inverter, NAND, NOR, XOR, AND, OR, and MUTEX. 

 

Fanout: The ability of a given logic gate’s output to drive a number of inputs  

  of other logic gates of the same type.  The number of logic gates  

  that can be driven is called the fanout.  

 

Input-Load: Describes the total capacitive magnitude, in Farads, that a given  

  logic gate requires to be driven. 

 

Inverter: The most basic architecture of all digital CMOS circuits.  This  

  device with reverse the polarity of it’s input (if in=1 then out=0, if  

  in=0 then out=1). 

 

 

Figure 2.  Basic CMOS digital symbol for an inverter. 

 

MOS and/or MOSFET: (Metal Oxide Semiconductor Field Effect Transistor)  

  Specific type of transistor characterized by the use of a thin oxide to 

  isolate the control/gate-terminal.  

 

Output-Load: Describes the total capacitive magnitude, in Farads, applied to the 

  output of a logic gate in a circuit. 

 



 8 

Process/Technology:  Refers to a specific method for manufacturing MOSFET  

  transistors.  Each process contains numerous physically unique  

  attributes from physical dimension to atomic structure. 

 

Resistance: Unit: Ohm 

€ 

(Ω).  Material resistance to electrical-flow of current. 

 
Saturation Velocity:  The saturation velocity represents the fastest rate that  

  charge carries can transition through a transistor channel (path  

  between the source and drain terminals).  The velocity of the  

  charge the carrying components through a transistor, increase with  

  the increase of voltage across the source and drain terminals.  This 

  increase rolls off asymptotically to the saturation velocity.  

 
Skew:  See “Delay.” 

 

Slew/Slope: The time required by a signal/pin to transition from 10%-90% VDD or 

  from 90%-10%VDD. 

 

 

Figure 3.  Slope/Skew measurement of rising waveform. 
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SPICE: (Simulation Program with Integrated Circuit Emphasis).  SPICE is  

  an electrical engineering industry standard tool for analog circuit  

  simulation.  SPICE provides accurate simulation data based on  

  transistor process manufacturing data. 

 

Stack Devices: In this text, refers to the connecting of transistors sources and  

  drains to form a series path from the supply voltage to the output.   

 

Figure 4.  4-Stacked NMOS devices in series. 

 

Sub-Threshold Current: Amount of electrical current that flows through a  

  transistor when it is logically off.  
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Transistor:   Electrical/Voltage controlled switches with a control terminal and  

  two other terminals that are either connected or disconnected  

  depending on the control terminal voltage. 

 

 

Figure 5.  3-Terminal standard PMOS and NMOS transistor schematics. 

 

VLSI:   (Very Large-Scale Integration) Electrical systems/circuits containing 

  hundreds of thousands of transistor.  

 
Voltage: Unit: Volt (V).  Measure of electric potential between two points in a 

  circuit. 
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CHAPTER THREE  
LITERATURE REVIEW  

 

 To develop an accurate propagation delay model with minimal calibration 

effort, a well-defined circuit architectural specification is required.  Examination of 

existing PDM calibration methodologies provides a platform for the development 

of improvements in accuracy [2-5].  The balance between accuracy and solution 

acquisition time is constrained by the architectural design specification.  Every 

full-custom integrated circuit design presents unique accuracy and effort 

requirements and the best solutions are commonly comprised of a hybrid model 

of theoretical equations fitted with simulation-based fitting coefficients. 

 The method for developing a propagation delay model, presented in this 

thesis, is the result of understanding existing circuit modeling techniques and 

applying the key strengths of those models while mitigating the impact of any 

inherent flaws.  Basic propagation delay models account for a small number of 

factors (output load, circuit voltage and manufacturing technology) that control an 

actual circuit delay.  Empirical and theoretical work on the topics of input slope, 

fanout, interconnect, and logical effort provide modeling strategies to account for 

most modeling effects overlooked in the basic models. Updating a basic PDM 

with detailed modeling effects and fitting the model to a given process provides 

an increase in modeling accuracy with minimal increase to the modeling 

complexity.  

 



 12 

3.1 Full Custom IC Design 

 

 Circuit design work, in the context of a full-custom digital CMOS IC 

design-flow, is represented in the flow diagram shown in Figure 6.  The full 

custom design flow begins with an architectural specification that provides initial 

constraints on items including but not limited to manufacturing process 

technology, system clock-cycle time, circuit-topology, and interconnection or 

“fanout.”  The initial calculations for the individual circuit sizes (transistor widths 

WN and WP) begin after the system level architectural specification in place.  The 

integrated circuits are then simulated using a SPICE-based tool.  The resulting 

circuit timing is analyzed to determine if the architecture’s specified timing has 

been achieved.  Initial simulations often reveal timing paths that fail to meet the 

architectural specification that will require repeating the design process from the 

circuit-sizing step forward.  The process of sizing, simulating, and evaluating 

repeats until the architectural timing specification is met.   
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Figure 6.  Full custom IC design flow. 
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3.2 CMOS Digital Integrated Circuits Delay Model 

 

 Propagation delay models for CMOS digital logic often omit second-order 

effects due to their limited impact on modeling accuracy.  Input-slope, device 

sizing, and output-load comprise 90%-95% of the total delay accuracy for most 

digital circuits [2].  The impact of second order effects are described within the 

scope of the long channel CMOS propagation delay model.  Those effects 

include, but are not limited to; channel length modulation, carrier saturation 

velocity, body-effect, and substrate biasing. 

 The aforementioned exclusions greatly simplify the derivation and 

resulting propagation delay model.  These effects can be accounted for to gain 

accuracy when precision is needed and when the exact application architecture 

is known.  Channel length modulation is only accounted for in “short-channel” 

regimes, where the effective channel length of a MOS device is approximately 

equal to the source and drain junction depths. 

 Following all the simplifications above, the resulting propagation delay 

models for rising and falling transitions of a standard CMOS inverter are: 
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€ 
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 
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  

 

 
   

Equation 4 

 Cload : Capacitive load applied to the output of the inverter. 

 VT:  Threshold Voltage for a transistor. 

 VDD : Drain Voltage applied to PMOS Drain Terminal. 

 COX: Gate-Oxide Capacitance 

 

€ 

µn,µp : Mobility of electrons and holes through transistor channel. 

 kn,kp: Transconductance of the NMOS and PMOS transistors 

 

 

 

 

 

 

 

Figure 7.  Inverter testbench for propagation delay model. 
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 The propagation models above [Equations 1-4] are explicitly defined with 

out inclusion of channel length modulation, saturation velocity, and body biasing 

effects.  To improve the accuracy of simplified propagation delay models, 

iterative analysis and back-fitting has been shown to provide a rapid and reliable 

solution [2].  Iterative analysis is supported by the Logical Effort method as well 

[3].  The magnitude of improvement fluctuates across different manufacturing 

technologies and reveals no simple trends that could allow for more accurate 

initial solutions. 

 

3.3 Model for Propagation Delay Evaluation  

 

 CMOS inverter propagation delay requires consideration for input slope 

effects and modeling of the source-drain series resistances [4].  The resulting 

methodology consists of semi-empirical fitting coefficients matched to a 

propagation delay model for CMOS inverters.  Many sources address the 

propagation delay for inverters [2,3,5-22] and few specifically focus on the effects 

related to the input slope and source-drain resistance.  

 Propagation delay is the measure of time from an input signal passing 

through 

€ 

Vdd
2

, until the output transition in the opposing direction through 

€ 

Vdd
2

.  The 

propagation delay can be further deconstructed into two elements.  The first 

element is the delay resulting from a step input, or instantaneous input and the 

second element is the contribution from the input slope.  The second element 



 17 

can be found empirically by measuring the step input propagation delay (in a 

SPICE simulator) and then the realistic delay of a sloped input and subtracting 

the step delay from the sloped input delay.  The difference between the two 

delays is the input slope contribution 

 

The propagation delay due to the step response can be verified through the 

following derivation: 

 

€ 

IDS
Cload

⋅Tstep = 0.5Vdd −
1
Leq

LSAT
0.5Vdd

Vdd

∫ dVOUT  
Equation 5 

 
Where     

€ 

LSAT
0.5Vdd

Vdd

∫ dVOUT = l2Ec (y sinh y − cosh y) Y2
Y1 + D  

Equation 6 

 

€ 

Y1 =
LSAT Vds =Vdd

l
 

Equation 7 

 

€ 

Y2 =
LSAT Vds = 0.5⋅Vdd

l
 

Equation 8 

 

3.4 CMOS VLSI Design 

 

 Full custom design for very large scale integrated circuits (VLSI) presents 

many unique design issues that require specialized design solutions.  The four 

elements of full custom design that are inextricably linked together are area of 

the physical-design, cost of circuit manufacture, speed of circuit and power of 

circuit.  The cost and area are often referenced interchangeably since the cost 
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per die is directly proportional to the amount of dies one wafer can yield [7].  Put 

another way if the die size for a single design increases by 10% then there are 

approximately 10% less dies per wafer.  The cost to manufacture a silicon wafer 

is typically fixed [7] and therefore the cost per die is directly linked to the area of 

the die.  If a die grows in size, less will fit on a single wafer and the individual die 

cost then rises accordingly. 

 Floor planning is a way to help define the physical size limitations to a 

given design.  Process technology dictates that there is a maximum die size that 

can be reliably manufactured and sets a limit to the amount or size of the circuits 

that one die may contain.  This limitation is why entire motherboards within 

personal computers are not entirely on a single chip [7].  Though every 

technology comes closer and implements more per die than the previous 

generation, the ultimate goal of producing an entire system on a single chip is yet 

to be realized. 

 Maximum speed is a process technology limiting constant.  There are 

many ways to define speed and the most practical definition is based on 

describing the digital speed.  The digital speed limitation can be found by simply 

making an inverter chain, in a loop, of odd number of inverters.  This circuit will 

oscillate at the “maximum” possible frequency for a given digital circuit.  This 

speed value is not practical since most digital design is implemented with 

combinational logic.  Therefore, the target speed for a system is usually derived 

from a more typical circuit topology and tested for maximum speed. 
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 Power is a major component of VLSI full custom design.  The power for a 

circuit is related to both the speed and area, but it does not have the direct 

correlation that area and cost share.  Power can increase with area if the area is 

comprised of an active circuit, but it can also stay the same if the extra area is 

not being used in typical circuit operation.  For example, the built in self-test 

circuits that will not actively work in the final product, but were installed to debug 

and test the initial product.  Power can increase with speed, exponentially, but 

only if that speed is uniformly applied to the entire circuit [7]. 

 The last major concept for VLSI design is “typical fanout.”  When 

determining a capacitive load for a given circuit, the rule of thumb is to apply a 

load that represents four times the equivalent load of the driving device.  If an 

inverter of total width 1um, 0.33um NMOS and 0.66um PMOS, and 

€ 

100 fF
µm

 

 
 

 

 
 , 

then the inverter has a load of 

€ 

1µm( ) ⋅ 100 fF
µm

 

 
 

 

 
 =1 fF .  A fanout of four would yield 

a load of 

€ 

400 fF .  This is the fanout of four rule of thumb used as a typical load 

for a given CMOS device when testing in a test-bench. 
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3.5 Interconnect Propagation Delay  

 

 The objective of modeling interconnect propagation delay is to present a 

closed form solution to model the propagation delay associated with device 

performance and interconnected loads.  Memory cell architectures have unique 

conditions for interconnect (array-like placement, interconnect with high 

resistance poly-silicon wires, and high-volume uniform structure) and require 

individual compensations to ultimately accumulate their effects into a propagation 

delay model [9]. 

 Analysis begins with individual transistors and interconnections of a static 

random-access memory (SRAM) cell.  The word line, running the length of an 

SRAM block is treated as discrete element, only accounting for where it 

intersects a given SRAM cell.  Making every portion of the cell discrete, a 

singular solution for interconnect load and parasitic effects can be modularized 

[9].  Modularization provides design leverage since one cell with a particular 

behavior can be replicated many times.  The cumulative impact of every cell 

detail is then much more important to scrutinize and control, similar to the 

impacts seen in VLSI design [8,9]. 

 Most elements of an SRAM cell are so short that they can be modeled 

with simplified resistor-capacitor topologies (similar to a low pass filter).  There 

are however, some interconnect elements that are made from poly-silicon, a high 

resistance material with transmission like behavior at smaller aspect ratios.  
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Transistors are modeled with voltage sources, resistors, and capacitors.  

Combinations of all the above elements results in a network of elements that 

resemble a fundamental circuits-course homework assignment [16].  

 The simplified discrete circuit-model enables the network analysis and the 

ultimate production of a closed-form transfer function.  This closed-form solution 

is re-examined with feedback from actual layout extraction data, and adjusted to 

account for errors due to omitting nth order effects.  High order effects are often 

omitted since their contributions are so small and accounting for their values is so 

time consuming [9].  The gap in model precision is bridged through adjustments 

derived from physical circuit layouts.  The layouts measurements are much faster 

and equally as accurate for calculating high order parasitic effects.  Accuracies 

from the modeling of interconnect propagation delay are within 5% of actual 

circuit delays [9]. 

 

3.6 Delay Model of a RC Chain 

 

 Propagation delay models for RC chains present another method of 

accounting for propagation error through the use of the current behavior in an RC 

chain.  Three simplified RC models comprise the existing structures for modeling 

current networks propagation delay for interconnect, transmission-gate, and 

downstream load.  Propagation delays can be emulated through equivalent RC 

transmission line models.  A step-input current generator closely matches results 
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of a transfer function model [8].  Final circuit optimizations, using the 

aforementioned method, result in circuit driving paths with less signal-buffer 

stages and therefore less total power and silicon area consumed. 

 Three transmission delay models represent circuit topologies for 

interconnect or line impedance, pass-gate or transmission-gate impedance, and 

CMOS logic buffers.  The standard transmission line model is comprised of and 

input step-response current generator driving a resistor-capacitor network as 

shown in the Figure 7. 

 

Figure 8.  An RC-transmission line model. 

 

 The propagation delay for a transmission line is modeled with an input 

voltage source, rather than a current source.  The behavior of an RC ladder 

network was sufficiently close to the first order circuit model when using Elmore’s 

time constants [8] (with the assumption that the signal-transition was complete at 

full VDD or ground and therefore effectively has a infinite period).  However, the 

CMOS buffers that drive the RC ladders resemble current sources more than 

they do voltage sources.  This behavior is the catalyst for choosing current input 
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sources for the models rather than the traditional voltage inputs found in most 

transmission signal analysis techniques. 

 The result of using an input current source to drive RC ladder networks 

leads to a significantly simplified propagation delay model compared to traditional 

circuit propagation delay models.  This method of optimizing paths has produced 

smaller propagation delays and ultimately required less signal repeaters than 

traditional methods.  The use of less logic to achieve the same signal-timing 

objective means an overall savings of power and silicon area in the final product.  

 

3.7 Propagation Delay Model Based on Charge Delay 

 
 The relationship between available charge and the resulting propagation 

delay can be expressed in the charge delay model.  There is a method to 

evaluate propagation delay for complex CMOS gates from an inverter delay 

model.  The inverter delay is based on and nth-power law MOSFET model.  

Transistor collapsing techniques, developed for complex gates, take into account 

the effects of short-channel, internal coupling capacitance, and the body effect 

[5]. 

 MOS device stacks can be simplified into slope delay curves.  These 

curves represent a typical inverter with a varying output load.  Making a complex 

stack equate to a simple inverter model, can radically simplify the evaluation of 

complex circuits at the gate level. 
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 Capacitive values for the parasitic and load capacitors are lumped 

together to represent a single static load.  The currents are derived from 

propagation-delay, slope and lumped capacitances.  The charge delay concept 

may be expanded through deriving a delay-in vs. delay-out table.  This table is 

the grand simplification of the complex circuits into a much simpler delay chart 

containing curves for each previously complex device that is now reduced down 

to an equivalent inverter. 

 

3.8 Logical Effort 

 

 Logical Effort (LE) is a method for analyzing digital-circuit timing delays 

and using the resulting information to identify the relative trade-offs between 

circuit-design complexity and circuit-speed.  The fastest circuits tend to have the 

greatest logical complexity and power consumption [3].  The LE method presents 

two mechanisms for understanding a circuit’s abilities and limitations.  These 

mechanisms are “electrical effort” and “logical effort” [3]. 

 The basic premise of LE can be demonstrated through qualitative analysis 

of a simple circuit.  For an inverter of any given manufacturing-technology there 

are design tradeoffs between speed, size, power, and capacitive-load.  Output-

delay for a device can be simplified with the following LE equation:  
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€ 

dabs = d ⋅ τ  Equation 9 

 

Where “

€ 

τ ” is the basic delay unit for an inverter driving a fanout of one, without 

accounting for any parasitic capacitances.  The “d” represents the collection of all 

other effects lumped into a singular quantity.  The “dabs“ is the realized delay for 

the inverter with all the parasitics and other effects combined. 

  

The lumped-effects “d” is reduced to two major components: 

 

€ 

dabs = f + p  Equation 10 

 

The fixed portion of the delay is “parasitic delay” (p), and the variable portion is 

called the “effort delay” (f).  The effort delay is the product of a circuit’s “output 

load” (h) and “logic complexity” (g). 

 

 

€ 

f = g ⋅ h Equation 11 

 

 The complexity of a circuit will change that circuit’s ability to drive a load.  

Less current is available to drive an output load for circuits with greater path 

complexity.  An Inverter and a NAND gate of equal transistor sizes and driving 

equal capacitive loads will produce different magnitudes of current due to their 

relative logical complexity.  This difference is accounted for in the term for logical 

effort (g).  The same circuit driving different fixed capacitive loads will result in 
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varying current delivery.  This behavior is represented with the term for electrical 

effort (h). 

 

Electrical effort represents the ratio of a circuit’s output load capacitance relative 

to the input capacitance. 

 

€ 

h =
Cout

Cin

 Equation 12 

 

Combining the individual components for a particular circuit culminates in the 

following summary expression: 

 

€ 

d = (g ⋅ h) ⋅ p  Equation 13 

 

3.9 Document Review Summary 

 

 The citations for the literature review were selected by highest volume of 

citations in the thesis by Baum [1-7].  The concepts presented in the cited 

literature cover the key aspects needed to understand propagation models and 

their development.  From the initial inverter-chain test-bench [3], to the extraction 

of an initial propagation delay 

€ 

τ  [2], to the effective resistance calculations [4], all 

the essential elements are assembled from the cited papers.  The approach 

taken by Baum is only one of many possible combinations, as demonstrated in 

the improvements presented in the results-conclusion of this thesis [1]. 
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 The collection of citations was selected for their contributions to each of 

the major steps in the calibration process presented by Baum [1].  Each citation 

provides research necessary to understanding the fundamental principals 

governing their respective stage.  The inclusion of conflicting citations is intended 

to provide examples of where the methods from Baum [1], may be improved 

upon.  The reference literature provides support to show that the method 

developed in Baum was well planned and thoughtfully executed [2-9]. 
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CHAPTER FOUR  
METHOD FOR CALIBRATION OF A PROPAGATION DELAY MODEL 

 

 Calibration of a propagation delay model requires six major steps.  Each 

step provides data is that used to adjust an initial analytical delay-model and the 

resulting solutions.  The purpose of the calibration steps is to improve the 

accuracy of an analytical delay-model solution from 90%-accuracy to greater 

than 95%-accuracy. 

 The fist step in the calibration method of a PDM is to determine a 

propagation delay target.  The delay target will be used for all subsequent 

method-stages as the ideal propagation delay for a given logic block.  The 

second step involves calibrating a single inverter to meet the target propagation 

delay.  The calibration in this step refers to adjusting the WN and WP values until 

the target delay is met.  The third step is comprised of extracting the timing 

constants from the inverter testbench to satisfy the Kang-Leblebici PDM.  The 

fourth step consists of extracting fitting coefficients from the initial PDM found in 

step three.  Step five and six consist of iterations through the modeling steps 

three and four with focus on the effects of the input-slope and output-loads to the 

test circuit.  The changes in slope and load can result in discrepancies between 

the model and the actual circuit performance and therefore a range of behavior 

over a typical range of conditions will produce an average value for the PDM 

fitting coefficients. 
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 The manufacturing process file provides manufacturing parameters for the 

transistors, specific to a given manufacturing technology.  A process file is often 

called a “SPICE-deck” [7,9].  The physical device parameters and subsequent 

calculations are wholly dependent upon the technology file being evaluated.  

Values from one SPICE-deck do not be scale to another process for most cases.  

The TSMC 0.18

€ 

µm (TSMC0.18) process file is used in the following example for 

greater clarity 

 

4.1 Propagation Delay 

 

 The first step in calibration of a PDM involves simulation test-benches.  

The test-benches are used to extract circuit behaviors.  Those behaviors are 

used to adjust delay results in analytical circuit delay models.  

 The circuit topology used to measure single-stage propagation delay is an 

inverter chain, as shown in Figure 8.  The use of seven stages is not required but 

has shown to be the sufficient number of stages to stabilize the stage delay.  

When the stage delay between the last stage and the second to last stages is 

within 0.25% total-delay, the chain is sufficiently long enough to extract an 

accurate reference stage delay value. 
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Figure 9.  7-stage inverter chain. 

 

 The MOS device sizes of the inverters in the seven-stage chain were 

implemented with two different schemes.  Both schemes used a device ratio for 

PMOS to NMOS of two.  Initial device sizes are minimum and two times 

minimum for the NMOS and PMOS transistors, respectively.  The minimum 

device sizes for a manufacturing technology are listed as “TNOM” for both NMOS 

and PMOS data sheets.  The units for TOX are in 

€ 

4 ⋅10−9meters.  The listing in a 

datasheet “TOX=4e-9” as shown in Appendices A and B.  The second set of 

MOS device sizes is twenty-five times greater than minimum initial sizes.   

 The first inverter of the chain (I0) was sized with initial NMOS and PMOS 

transistor width and duplicated seven times to avoid repetitive circuit device 

sizing of every inverter in the inverter-chain as shown in Figure 9.  The test-

bench uses the term “vdd!” to identify a global maximum voltage within the 

context of the Cadence simulation environment.  The last inverter stage is 

connected to a capacitor to simulate a realistic circuit environment for the inverter 

chain.  The size of the output capacitor is calculated to match the input 

capacitance of each of the inverter chains’ stages.  The gate capacitance per 

micron, referenced from the process file, is multiplied with the total inverter MOS 

device size to generate the equivalent output inverter load. 

Input Slope 
10ps 

Output 
Load 

1  2  3   4    5           6           7 
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Figure 10.  Inverter chain schematic test-bench. 

 

 After the inverter chain is drawn, connected, and sized, the next item to 

complete is the DC voltage source.  This will allow for referencing the term “vdd” 

in other sources so that any central change to the supply voltage will 

automatically be reflected across all sources.  The TSMC0.18 process file uses 

one and eight-tenths volts for the operating voltage “

€ 

Vdd .”  The last voltage 

source to complete is the “vpulse.”  This source provides the input waveform to 

the inverter chain.  The values for v1 and v2 represent the minimum and 

maximum values for the input wave.  The period is the amount of time between 

the output voltage beginning the transition from v1 to v2 and the time the output 

voltage returns completely from v2 to v1.  The slope is set to be infinite by 

applying 0

€ 

ρs as a rise time.  A 0

€ 

ρs slope is the same as an infinite slope.  An 

input signal with no slope delay is able to transition instantly from one voltage 
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level to another.  The set the appropriate period for the input pulse wave may 

require a few initial guesses.  The simulation needs to be long enough to see all 

inverter stages toggle while avoiding excessive length that would result in 

redundant data.  Users with more circuit simulation experience can make rough 

estimates based on scaling cycle-periods from the closest known technology.  A 

test value of 260

€ 

ρs was used for the initial period and the pulse width was 

chosen to be half the period for an even waveform. 

 The termination-capacitor, at the end of the inverter chain, should be the 

same capacitive load as the input gate capacitance for all seven of the upstream 

inverters.  Matching the capacitive value will result in the greatest accuracy.  The 

capacitor value is calculated using values from the manufacturing datasheet 

(CGDO, CGSO, CGBO) as shown in Appendices A and B.  The datasheet-

values are the multiplied with the MOS devices’ dimensions.  CGDO represents 

the capacitance per unit-length of the gate to drain overlap.  CGSO represents 

the capacitance per unit-length of the gate to source overlap.  CGBO is the 

primary component of gate capacitance and represents the capacitance per unit 

length for the gate to body overlap. 

 The final steps in the set up of the single inverter test-bench simulation are 

the selection of simulation type and duration.  A “transient analysis” is used for 

the inverter chain test-bench.  The transient test-bench allows a simulated circuit 

to run without interference, for a duration specified by the user.  The Cadence 

“Analog Simulation Environment” (ASE) derives initial conditions for the transient 
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analysis.  The initial conditions allow for measurement of node voltages prior to 

the arrival of the first input signal.  The ASE identifies repetitive behavior and 

applies the appropriate starting conditions to the simulation.  To ensure the ASE 

will behave in a predictive manner, the transient analysis must be set to a length 

of slightly more than one full test-bench period.  If not using the “Cadence Design 

Suite,” verify the results by running the transient analysis at least seven full 

cycles to ensure the results are equal to the single period run outlined above. 

 The propagation delay is calculated with the ASE built-in wave calculator.  

If using another analog simulator that does not have a wave calculator, point-

analysis will suffice.  For this simple case using point analysis is quicker than a 

wave calculator.  To obtain the propagation delay for a specific device, the cursor 

cross hair is positioned over the input signal waveform where it transitions past 

€ 

Vdd

2
 (rising or falling) and the simulation time is recorded.  Next, the cross hairs 

are placed on the inversely corresponding output transition, at 

€ 

Vdd

2
, and the 

simulation time is recorded.  The propagation delay for the device results from 

subtracting the first recorded time from the second.  

 The simulation is repeated for a second inverter chain with transistor 

device sizes twenty-five times greater relative to the previous inverter chain.  The 

resulting propagation delay for the final two stages should be stable (within 

0.25%).  The minimum delay of the four measurements is selected as the target 

delay for the calculations that follow. 
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4.2 Calibration of the Single Inverter  

 

 After the minimum value for propagation delay, “

€ 

τ ,” has been select 

through the preceding steps (

€ 

τ = 32.3ps), the next goal is to build a single-inverter 

test-bench with a static capacitive load and user generated input slope.  

 The single-stage inverter test-bench requires an output load capacitance, 

device sizing for both PMOS and NMOS devices, and the input slope from the 

previous step.  The device sizes will be calculated first, using analytical methods 

from reference texts [2,3].  The output capacitive load is calculated as a relative 

quantity with respect to the input capacitance of the initial inverter size. 

 Transistor device sizes will not be the minimum or twenty-five times the 

minimum, as used in the previous inverter chain.  The PMOS and NMOS sizes 

have to be calculated using the “Kang and Leblebici propagation delay model” 

[2].  The Kang and Leblebici inverter propagation delay model is noted below in 

Equations 15 and 16 [2]. 

 

€ 

WN =
A ⋅Cload ⋅ LN

τPHL
 

€ 

A =
1

KNP ⋅ (VDD −VTN )
2 ⋅VTN

VDD −VTN
+ ln 4 ⋅ (VDD −VTN )

VDD

−1
 

 
 

 

 
 

 

 
 

 

 
  

Equation 14 

€ 

WP =
B ⋅Cload ⋅ LP

τPLH
 

€ 

B =
1

KPP ⋅ (VDD − VTP )
2 ⋅ VTP

VDD − VTP
+ ln

4 ⋅ (VDD − VTP )
VDD

−1
 

 
 

 

 
 

 

 
 

 

 
 

 

Equation 15 

 

WN = NMOS transistor width 
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WP = PMOS transistor width 

Cload = output load capacitor as shown in Figure 10. 

LN, LP = Transistor channel lengths for both PMOS and NMOS transistors 

(TSMC0.18) 

 

All other parameters are calculated from or taken directly from the TSMC0.18 

datasheet (VDD, KNP, KPP,VTN, VTP) as shown in Appendices A and B.  

 

 

Figure 11.  Single inverter test-bench for WN & WP. 
 

 The propagation delay value, 

€ 

τ = 32.3ps, is used for both NMOS and 

PMOS device sizing.  Symmetric propagation delay is a common practice to 

simplify design-sizing process due to elimination of delay variations that 

ultimately add complexity to a sizing methodology.  This delay simplicity comes 



 36 

at a cost to power and total-delay and is detailed in the Results section of this 

thesis.   

 Initial device sizes for WN and WP come from the minimum device sizes 

used in the inverter chain test-bench.  The capacitive load “Cload” at the output of 

the inverter needs to be calculated.  The magnitude of the Cload will be equivalent 

to four times the capacitive load of the test-bench inverter.  The value of four, or 

fanout of four, is an industry standard fanout [1].  More discussion on the 

accuracy of this assumption is detailed in the Results section.  The output load of 

the inverter is calculated with the physical device parameters listed in the 

manufacturing process files as shown in Appendices A and B. 

 

The initial values for the test-bench: 

1) WN = 0.484

€ 

µm. 

2) WP = 0.968

€ 

µm . 

3) Cload = 7.14fF. 

4) Input slope of 80ps (measured from the inverter chain test above). 

 

 The purpose of the single inverter test-bench is to calibrate the analytical 

solutions for NMOS and PMOS sizing, with results from SPICE-based 

simulations.  From this starting point, iterative cycles of simulation, measurement, 

and transistor resizing, will be executed until the resulting propagation delay 

matches the timing target.  The initial sizes will often not meet the timing target 
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due to the nature of miscorrelation between analytical derivations and SPICE 

based simulations.  The analytical equations, Equations 15 and16, are based on 

assumptions that omit important second order effects of saturation velocity and 

channel length modulation [2].  

 The error results from each simulation are used to update the transistor 

sizes.  If the propagation delay was measured to be “62.6ps,” for the output 

falling transition, the propagation delay is 

€ 

τ error =
64.6ps
32.3ps

= 2 .  The NMOS device is 

updated using the error percentage to increase the transistor size by the same 

amount 

€ 

WN−new =WN−current ⋅ τ error = 0.484µm ⋅ 2 = 0.968µm .  The results, as shown in 

Table II, detail the process of using error to adjust device sizes and re-testing.  

These steps repeat until the transistor sizes result in a delay less than 1% from 

the target propagation delay.  After seven simulations, the propagation delay 

error is less than 1%.  The device sizes can have determined for matched 

propagation delay. 

 

4.3 Derivation of Timing Constants 

 

 The simulation-based values for A, B and R can now be calculated.  “R” is 

the PMOS to NMOS device ratio, “A” represents the effective device resistance 

of the NMOS transistor, and “B” represents the effective device resistance of the 
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PMOS transistor.  Rearranging the earlier equations, as shown in Equations 15 

and 16, for propagation delay: 

 

 

€ 

WN =
A ⋅Cload ⋅ LN

τPHL
 Equation 16 

 

€ 

WP =
B ⋅Cload ⋅ LP

τPLH
 Equation 17 

 

Solving for A and B: 

 

 

€ 

A =
WN ⋅ τPHL
Cload ⋅ LN

 Equation 18 

 

€ 

B =
WP ⋅ τPLH
Cload ⋅ LP

 Equation 19 

 

A and B values are calculated from the simulation based propagation delay as 

apposed to the process parameter-based calculation earlier.  By using the 

simulation data, the results will implicitly incorporate all the secondary effects that 

were omitted from the original calculations.  The values for A and B now include 

the saturation velocity, channel length modulation, and body bias effects.  

 

The completed steps to this point: 

1) The target propagation delay and slope were extracted from an inverter 

chain test-bench. 



 39 

2) The slope and delay values were used to calculate the initial device sizes 

of an NMOS and PMOS transistor for the inverter test-bench. 

3) The output capacitive load was calculated from the initial device sizes and 

the target fanout of four times the input. 

4) Seven iterations of device sizes for the NMOS and PMOS transistors were 

run and resulted in the simulation based device sizes for the NMOS and 

PMOS transistors. 

5) The values for A and B (effective device resistance) were calculated from 

the measured propagation delay of the single inverter simulations. 

 

4.4 Fitting Coefficients for Stacked Devices 

 

 The simulation-based timing and subsequent calculations for A and B, 

enable the inverter device sizes to be calculated such that the resulting 

propagation delay will be 

€ 

τ = 32.3ps.  The next half of the method section is 

intended to extract fitting coefficients for stacked transistors.  The fitting 

coefficients are used to enable the scaling of NMOS and PMOS transistors in a 

stacked configuration.  The stacked device sizes will be generated using a scalar 

value of the original inverter device sizes.   

 An NMOS stack of two transistors will drive a load slower than an equally 

sized single stack NMOS due to the added resistance, capacitance and 

secondary effects of the stacked transistor.  If the stacked transistors are scaled 

up in size until the propagation delay was matched to the original single stacked 

transistor delay, the ratio between the stacked NMOS device sizes and the single 
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NMOS size would be the fitting coefficient.  This fitting coefficient can be 

determined through simulations of varying stack heights until the resulting delays 

meet the single stack height delay.  This approach negates the need for sizing 

every combinational logic block individually thus allowing the process to be 

reduced to a simple scaling of devices based on a single analysis of an inverter 

and three subsequent extractions of scaling coefficients for stacked transistors. 

 An inverter is used as a template from which circuits of greater complexity 

can be modeled.  A NAND2 (2-input NAND gate), can be sized in a similar 

manner as the inverter if a scalar value could be found to effectively match the 

inverter and NAND2 switching behavior.  To model a circuit with inverter-like 

behavior, fitted models are made that reflect the effects of stacked transistors.  

The goal is to find scalar values that represent the effects of a stacked transistor.  

Circuit sizing can be performed by finding an inverter to drive a given load, 

replacing the inverter with the correct logic gate intended to drive that load, and 

sizing that logic gates’ transistors with the scalar values extracted from the 

following simulations. 

 The following steps are taken to find the effects of the stacked devices on 

timing and ultimately extract the scalar values required for each stack to meet 

inverter like timing: 

1) Build a single test-bench to measure the timing of stacked transistors or 

one, two, three, and four-high stacks. 

2) Set the test-bench stimuli as seen in Figure 11. 
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a. The source-diffusions of the transistors closest to the supply are 

connected to supply (gnd and VDD for NMOS and PMOS, 

respectively). 

b. The gate-terminals for the transistors closest to the supply sources 

are set to 90% of the effective supply (90%-VDD and 10%-VDD for 

NMOS and PMOS, respectively). 

c. The gate-terminals of all other transistors are connected to the 

relative “on” supply (VDD and gnd for NMOS and PMOS, 

respectively). 

d. The drain-diffusion connections of the devices furthest from the 

supply are connected to the transient input (to be swept up and 

down for the NMOS and PMOS stacks, respectively). 

3) The series-currents through the stacked transistors are measured and 

then plotted for each set of stacked device. 

4) The current waveform is integrated across the input voltage range to 

extract effective stack resistance using Ohm’s Law, in Equations 21 and 

22.  

5) The effective resistive differences between each stack are used to 

calculate the stack-based fitting coefficients. 
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Figure 12.  Schematic test-bench: NMOS stacked devices. 
 

 The stacked transistor test-bench, shown in Figure 11, is used to simulate 

and plot one the electrical-current waveform I(NSN) for each stacks.  The test-

bench controls the voltage across the MOS stacks while measuring the I(NSN).  

The voltage and I(NSN) are used to calculate the effective resistances, RES(NSN), 

based on Ohm’s Law 

€ 

V = IR( ) as shown in Equations 21 and 22.  The drain 

voltage (VD) was swept (for NMOS from 

€ 

ground(0)→VDD  and for PMOS from 

€ 

VDD → ground(0)) resulting in a varying current. 
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€ 

RES(NSN ) =
1

I(NSN )
dVD

VDD
2

VDD

∫  
Equation 20 

 

€ 

RES(NSP ) =
1

I(NSP )
dVD

0

VDD
2

∫  
Equation 21 

 

 The fitting coefficients can be determined for each of the two, three, and 

four high stacks of NMOS and PMOS transistors.  The stack-fitting coefficients 

are denoted with “

€ 

γ .”  The scaling coefficient for a two-high PMOS-stack (

€ 

γP 2) 

represents the relative PMOS device sizes for the two-high stacked transistors 

relative to the PMOS size in an inverter.  The coefficients are calculate using the 

Equation 23: 

 

 

€ 

γ =
RES(NSP )

RES(NSP =1) ⋅ NSP

 Equation 22 

 

 

The two-high PMOS, mentioned above, is found to have a 

€ 

γP 2 by: 

 

 

€ 

γP 2 =
RES(NSP = 2)
RES(NSP =1)*2

 Equation 23 

 

 There is one more step to determine the device ratio “R,” for the standard 

circuits of a given architecture.  The calculation allows the device sizing to be 
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determined through sizing a single NMOS or PMOS portion of a gate and then 

applying R to determine the other half of the device sizes.  A table is generated 

to show the relative A and B values for each of the stacked device heights.  If a 

device is complicated (has more than one output path, or multiple device stack 

heights for either NMOS or PMOS), the worst-case stack is used. 

 An example sizing for a NAND gate is calculated below using the inverter 

device sizes and the scaling value for the NMOS stack.  A and R are calculated 

for a two-input NAND (NAND2) using Equations 25, 26, and 27: 

 

 

€ 

ANAND2 =
WN−NAND ⋅ τPHL

γN= 2 ⋅CLOAD ⋅ LN ⋅ (NSN = 2)
 Equation 24 

 

After calculating ANAND2, RNAND2 can be calculated: 

 

 

€ 

RNAND2 =
B

A ⋅ γN= 2 ⋅ (NSN = 2)
 Equation 25 

 

ANAND2 and RNAND2 can then be used to calculate the value for BNAND2 : 

 

 

€ 

RNAND2

RINV

=

B
A ⋅ γN= 2 ⋅ (NSN = 2)

B
A

⇒ RNAND2 =
RINV

γN= 2 ⋅ (NSN = 2)
 

Equation 26 
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 The major steps for the Method are now complete.  The process 

described above will enable users to acquire device sizes for most process 

technologies with less effort than traditional custom design methods.  However, 

two major simplifications were made to get through the derivation of scaling 

coefficients faster.  These two delay components need to be considered for 

applications where initial timing accuracy is required to be greater than 90%.  

These two delay components are: 

1) Static Input Slope 

2) Static Output Load 

 

4.5 Input Slope Variations 

 

 Previous work [1] attempts to analytically “circle back” to close the error 

margins from the two items mentioned above.  To account for the variation in 

propagation delay due to input slope, the entire calibration process is repeated 

with one significant change.  The “slow” input slope is derived from the use of a 

complex logic gate, AOI333, driving itself in a chain, similar to the seven-inverter 

chain before, with worst-case conditions applied.  With the input slope 

determined, the single-inverter test-bench is repeated with only the slope input 

change.  Rather than scaling both the NMOS and PMOS devices in the inverter, 

to meet the delay target, the NMOS device is held constant and the PMOS 
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device is swept to create a balanced delay.  The impact of scaling method has a 

significant effect on the propagation delay and on the final device ratio. 

 The input slope variations result in two new, and three total, sets of 

stacked device scaling coefficients.  One set for slow slopes, one set for typical 

slopes, and the last set of scaling coefficients tailored for fast slopes.  The 

application of the slope-dependent MOS scaling coefficients is based upon the 

unique timing conditions for each stage of a circuit design.  Careful selection is 

needed to determine when to use the appropriate scaling coefficient, so the final 

circuit timing will remain within the constraints of the architectural specification. 

 

4.6 Output Load Variation 

 

 Output load variations can have a significant impact on propagation delay 

model’s accuracy [1-3,5,7].  The propagation delay model can mitigated the load-

dependent impacts by using minimum and maximum (architecturally defined) 

output loads during calibration.  By spanning the range of all potential output 

loads during calibration, the resulting PDM incorporates all the load-related 

behaviors thus resulting in a more predictable model [3,6].  The use of three 

output loads (minimum, average, and maximum) produces even greater 

accuracy than the required two loads.   
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 The use of a third data point compensates for non-linear behaviors that 

exist at extreme circuit loading ranges.  The three data points provide two 

discrete linear models that represent the relationship between device size and 

output load.  Further inclusion of output load values, between the minimum and 

maximum loads, provide greater accuracy with a cost in added effort.  Every 

delay model will require an evaluation, between effort and accuracy, to determine 

the requirements needed to meet the architectural specification. 

 

4.7 Verification of the Final Model 

 

 The last stage of development for a PDM is performance-verification.  To 

ensure the model is capable of producing sufficiently accurate results, a 

representative “test-circuit” is designed, simulated, and measured.  The circuit 

chosen for verification is crucial to the ultimate success or failure of the PDM.  

The test-circuit topology must be representative of the typical complexity within a 

system-design for the test-results to provide a representative solution applicable 

to the rest of the design.  

 A 64-bit Kogge-Stone adder represents the typical circuit topology for a 

small microprocessor [1].  Individual logic-elements are sized using their output 

loads and input slopes as data-inputs to a PDM.  This method allows for the 

individual MOSFET sizes to be calculated in parallel, rather than working from 

the output stage backwards.  The architectural specification for a circuit defines 
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the circuit’s interconnections and overall timing requirements.  These 

interconnect and timing specifications can translate into slope and load 

magnitudes.  Automation can rapidly improve the rate at which these calculations 

are performed.  Given the regular nature of the design flow, manual calculation 

should only be performed as an initial PDM-calibration procedure. 

 The simulation timing results from the Kogge-Stone adder did not match 

well with the timing calculated from the PDM.  The error for some logic stages 

reaches 60%, and the average error was around 18%.  These results were 

confirmed manually for a small sample group of circuits from the design.  Further 

details of the error source and potential solutions are presented in the Results 

section. 
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CHAPTER FIVE 
RESULTS 

 

 The Results are composed of three sections.  The first section is the 

verification of the method presented in the work by Baum [1].  The second 

section is the verification of the results presented in the work by Baum [1].  The 

third section is the results of the improved propagation delay model as applied to 

discrete and a logic-block level design. 

 

5.1 Verification of Previous Method 

 

 Method verification is comprised of re-performing the method presented 

by Baum and then verifying the timing results against the previous published 

work [1].  The first step in repeating the PDM calibration is to build an inverter 

chain with the configuration of a ring as shown in Figure 13.  The intermediate 

nodes are sampled with voltage-probes so each may be measured and plotted 

separately. 
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Figure 13.  Schematic test-bench of an inverter chain. 
 

 The voltage-pulse generator, the right source at the far left of the 

schematic shown in Figure 13, is set with a slope of 10

€ 

ρs for both rising and 

falling input slopes.  The period is set to 400

€ 

ρs, with 50% duty-cycle (voltage is 

at VDD and Ground for equal measures of time).  To achieve these conditions, the 

object properties for the voltage-pulse generator are filled out as shown in Figure 

14. 
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Figure 14.  Pulse voltage source setup conditions. 
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Figure 15.  Waveform measurement verifying propagation delay. 
 

 The values labeled “delta,” indicate that the measured propagation delay 

between point-A and point-B is 32.6

€ 

ρs , as shown in Figure 15.  This measure 

represents the 

€ 

τPLH  for the sixth inverter of the inverter-chain.  The delay is 

measured as time between the input-transition at 50% of VDD, and the reciprocal 

output-transition reaching 50% of VDD.   

 The next calculation is for initial device sizes of the single inverter test-

bench.  The propagation delay and output load are used as constraints to 

produce NMOS and PMOS device widths.  The delay from the above 

measurement, 32.6

€ 

ρs, and the output load of 7.1fF are used to calculate the 
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initial device sizes for the inverter test-bench as shown in Equations 28 and 29.  

The output load is set by measuring the input capacitance of the load-inverter 

and multiplying by a factor of four.  

 

 

€ 

WN =
A ⋅Cload ⋅ LN

τPHL
 Equation 27 

 

 

€ 

A =
1

KNP ⋅ (VDD −VTN )
2 ⋅VTN

VDD −VTN
+ ln 4 ⋅ (VDD −VTN )

VDD

−1
 

 
 

 

 
 

 

 
 

 

 
  

Equation 28 

 

 The constants for “A” are listed in Appendix B.  The value for the NMOS 

device width (WN) is then calculated to be 

€ 

0.27µm  using Equation 28 and 

Equation 29.  The same process is repeated to calculate the PMOS device width 

WP using Equation 30 and Equation 31. 

 

 

€ 

WP =
B ⋅Cload ⋅ LP

τPLH
 Equation 29 

 

 

€ 

B =
1

KPP ⋅ (VDD − VTP )
2 ⋅ VTP

VDD − VTP
+ ln

4 ⋅ (VDD − VTP )
VDD

−1
 

 
 

 

 
 

 

 
 

 

 
  

Equation 30 

 

 Following the calculations for WN and WP (

€ 

0.27µm&0.54µm -respectively), 

the single-inverter test-bench can be run.  The goal for the single-inverter test-
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bench is to adjust the NMOS and PMOS device-widths until the target delay of 

32.6

€ 

ρs is reached.  Ideally, the calculations for device sizes, as shown in 

Equations 28 through 31, would result in a model that is very close to the actual 

sizes needed.  In reality there are simplifications made in the original derivation 

[2], that place the simulation results and analytical calculations significantly apart. 

 The test-bench for the single-stage inverter is set up as shown in Figure 

16.  The device sizes shown are for the final solution but the connectivity and the 

input stimulus provide an accurate representation of what the inverter test-bench 

looks like. 

 

 

Figure 16.  Single inverter test-bench for calculating WN and WP. 
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 The NMOS and PMOS device sizes are the result of seven sizing 

iterations, as shown in Table I.  The devices begin with minimum-NMOS (

€ 

0.484µm ) and with a ratio of R equal to two, the PMOS is (

€ 

0.968µm).  The delay 

results for each simulation are compared to the target delay, and a resulting error 

is calculated.  The rising-propagation delay error is used to adjust the PMOS, 

and the falling delay error used to adjust the NMOS.  This process is repeated 

until the resulting error is less than 1% for both delay arcs.  Table I shows the 

seven steps required to meet the target delay.  The final device sizes are (

€ 

0.768µm) for the NMOS and (

€ 

1.71µm) for the PMOS. 

 

Table I.  Results of single inverter test-bench iterations. 

Simulation

WN(cm) Current 

WP(cm) Current
tPHL Measured(ps)   

tPHL Measured(ps)

%Error 
from target 

32.3ps
WN(cm) Next 

WP(cm) Next

1

4.84E-05      
9.68E-05

37.8               
44.2

17.03      
36.84

5.66E-05     
1.32E-04

2

5.66E-05     
1.32E-04

37.0               
36.5

14.55    
13.00

6.49E-05     
1.50e-04

3

6.49E-05     
1.50e-04

35.0                
34.4

8.36         
6.50

7.03E-5        
1.59E-4

4

7.03E-5        
1.59E-4

33.9               
33.4

4.95         
3.41

7.38E-5         
1.65E-4

5

7.38E-5         
1.65E-4

33.1               
33.0

2.48          
2.17

7.56E-5         
1.68E-4

6

7.56E-5         
1.68E-4

32.8               
32.7  

1.55        
1.24

7.68E-5        
1.71e-4

7

7.68E-5        
1.71e-4

32.6               
32.6

0.93        
0.93

 
 

 The relative effects for stacking transistors are calculated from 

measurements of a test-bench timing and post-processing of the test-bench data.  

Four stacks of MOS transistors (NMOS in this example) are setup in the following 

configuration. 
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Each stack is configured with the following inputs: 

1) Gate input voltage, only for device closest to the power supply (in this 

case “gnd”), is set to 90% of VDD (1.62V) 

2) Gate input voltage for all devices above the bottom stack of one device, 

are set to full supply voltage VDD (1.8V) 

3) Source-connection for all devices at the bottom of the stack are connected 

to DC-ground (0V)   

4) Drain-connection for all device at the top of their individual stacks, are 

connected to the VPULSE, Input-Voltage Sweep-Device 

 

 

Figure 17.  Stacked NMOS device test-bench. 
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The input (VDRAIN) is swept from 

€ 

VDD

2
⇒VDD , while the drain-current is measured 

(M9, M8, M5, M3 in the diagram).  Using Ohm’s law we can calculate the 

“effective-resistance” for each stacked device. 

 

 

€ 

V = I ⋅ R⇔ R =
V
I
⇔ R =

1
IDRAIN (NSN )VDD

2

VDD

∫ ⋅ δVD  
Equation 31 

 

The effective-resistances for the four-stacked NMOS devices are: 

1) One-high  = 5.988E3

€ 

Ω  

2) Two-high  = 7.377E3

€ 

Ω  

3) Three-high = 8.743E3

€ 

Ω  

4) Four-high  = 9.868E3

€ 

Ω  

 

The effective resistances are used to calculate the device scaling factor “

€ 

γN ”: 

1) 

€ 

γ(NMOS )N=1 =
5.988kΩ
5.988kΩ

=1  

2) 

€ 

γ(NMOS )N= 2 =
7.377kΩ
5.988kΩ

=1.23 

3) 

€ 

γ(NMOS )N= 3 =
8.743kΩ
5.988kΩ

=1.46 

4) 

€ 

γ(NMOS )N= 4 =
9.868kΩ
5.988kΩ

=1.65  

 

 The same process for simulation and calculation is repeated for the PMOS 

devices.  The only changes are the relative Voltages used in the test-benches.  

Rather than 90%-VDD for the gate-voltage (as used for NMOS), the PMOS gate-
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voltage is 10%-VDD.  The rest of the test bench is simply swept in the apposing 

direction, relative to the PMOS and the following values were found for “

€ 

γP”: 

1) 

€ 

γ(PMOS )N=1 =
5.701kΩ
5.701kΩ

=1  

2) 

€ 

γ(PMOS )N= 2 =
7.24kΩ
5.701kΩ

=1.27  

3) 

€ 

γ(PMOS )N= 3 =
8.609kΩ
5.701kΩ

=1.51 

4) 

€ 

γ(PMOS )N= 4 =
8.837kΩ
5.701kΩ

=1.77 

 

 The sizing for a circuit can now be implemented based on the known 

behavior of the standard inverter and the scale factors for equivalent stacked 

devices.  To demonstrate the final application for a sizing of a device, a common 

logic block will be made !(AB+C). 
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Figure 18.  Complex logic gate sizing test-bench !(AB+C). 
 

The device sizing was determined with the following steps. 

1) The output load is 7.1fF. 

2) The inverter driving the 7.1fF load, did so in 32.6

€ 

ρs, with device sizes: 

a. NMOS: 0.765

€ 

µm 

b. PMOS: 1.71

€ 

µm  

3) For the NMOS that is single height, use the same size as template (0.765

€ 

µm) 

4) For the two-stacked NMOS devices, use the scalar (1.23x) for size (0.945

€ 

µm) 

5) All the PMOS paths are effectively two-high stacks.  Using the scalar for 

PMOS 

€ 

(1.71µm) ⋅ (1.26) = 2.16µm  
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 This concludes the verification of the method presented by Baum.  The 

values found for the initial inverter size, the scalar coefficients (

€ 

γ(PMOS ) & γ(NMOS )) for 

stacked devices and final sizing iterations will be discussed in further detail in the 

following Results Verification section.  The steps to complete the method 

verification, of the original work by Baum, were reproducible and followed a 

logically conclusive path toward the ultimate circuit-sizing goal. 

 

5.2 Verification of Previous Results 

 

 The previous-results verification consists of matching the intermediate 

values in the method presented by Baum, as well at the final device sizes.  The 

intermediate results are comprised of the initial inverter size, the inverter sizes 

tuning iterations and the stacked device scaling factors.  The final results 

verification is based on the device sizes and circuit timing for the components of 

the Kogge-Stone adder.  

 The initial inverter device sizes calculated by Baum, for the NMOS and 

PMOS transistors, were 

€ 

0.484µm  and 

€ 

0.968µm , respectively.  This matches the 

values calculated when reproducing the steps presented by Baum.  The initial 

device sizes were used in an iterative loop to match the target delay, as shown in 

Table I, and each intermediate value matched as well as the final inverter sizes.  

The last portion of the intermediate verification steps is calculation of the 
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gamma/stacked-device scaling factors.  The gamma values calculated matched 

the ones presented by Baum in the original thesis [1] 

 The final modeling of over seven-families of logic, at three-slopes and 

three-loads was not replicated in its entirety.  Each logic family presented by 

Baum was “spot-checked” at singular condition corners to verify the results were 

correct.  This testing represented approximately 33% reproduction of the total 

process analysis.  The reproduced circuits tested under the same conditions 

specified by Baum, matched and can be seen in Table II. 

 

5.3 Improved-Method Results 

 

 The improved results from using the new methods, detailed in Chapter 

Four, are displayed in two key examples.  The first example shows the device 

level accuracy improvements of individual logic gates, tested over varying input 

slopes and output loads.  The second example shows the design results for the 

critical path through a Kogge-Stone adder.   

 The sizing error for discrete logic devices is shown in Table II.  Previous 

work by Baum had an average error of 13.5%.  The improved sizing methodology 

yields a maximum error of 9.5%.  The source of this improvement is further 

detailed in the Discussion section.  The accuracy of the improved method is most 

significant for the discrete devices with an input slope of 222ps, where the 

average error drops to 3.9%. 
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Table II.  Discrete logic sizing results. 

Device 
Type 

Fanout-
Used 

Input 
Slope 
(ps) 

Min 
Delay 
(ps) 

Max 
Delay 
(ps) 

Min Dev. 
width 

%Error 

Max Dev. 
width 

%Error 

Improved 
Min 

Device 
width 

%Error 

Improve
d Max 
Device 
width 

%Error 

  FO-1 34 21.6 24.1 -7.4 24.9 -42.0% -35.3% 
Inverter FO-1 222 30 49.8 22.9 44.2 -19.5% 33.7% 

  FO-1 410 30 68 10.8 24.6 -19.5% 82.6% 

  FO-4 34 28.6 32.4 -25.4 -11.4 -42.8% -35.2% 
Inverter FO-4 222 42.8 63.6 -20.8 25.3 -14.4% 27.2% 

  FO-4 410 47 85 -23.8 23.3 -6.0% 70.0% 

  FO-1 34 33.6 34 -11.6 -8.4 -32.8% -32.0% 
NAND2 FO-1 222 51.3 63.5 6.2 20.3 2.6% 27.0% 

  FO-1 410 56.6 82.6 3.7 1.8 13.2% 65.2% 

  FO-4 34 46.5 48.5 -28.8 -2.1 -31.6% -28.7% 
NAND2 FO-4 222 70.1 66.6 -32.5 24.9 3.1% -2.1% 

  FO-4 410 80.6 105 -32.4 9.1 18.5% 54.4% 

  FO-1 34 41.5 46.5 -14.5 -0.8 -39.0% -31.6% 
NAND3 FO-1 222 66.6 74.5 -6.9 22.3 -2.1% 9.6% 

  FO-1 410 76.6 95.7 -8.9 -4.8 12.6% 40.7% 

  FO-4 34 55.1 63.1 -26.7 -19.3 -35.8% -26.5% 
NAND3 FO-4 222 86.4 91.4 -36.8 13.5 0.7% 6.5% 

  FO-4 410 101 118 -34.7 -12.1 17.7% 37.5% 

  FO-1 34 48.8 57.4 -17.8 -3.1 -38.0% -27.0% 
NAND4 FO-1 222 80.1 84.2 -20.3 -13.9 1.8% 7.1% 

  FO-1 410 93.9 107.5 -15.6 -5.3 19.4% 36.7% 

  FO-4 34 63 76.6 -28.6 -23.3 -35.9% -22.0% 
NAND4 FO-4 222 101 101 -40.1 4.2 2.8% 2.8% 

  FO-4 410 118.9 129 -38.9 -16 21.0% 31.3% 

  FO-1 34 51.9 52.1 8.5 25.1 -28.0% -27.7% 
NOR2 FO-1 222 72.2 78.1 20.8 34.1 0.2% 8.4% 

  FO-1 410 82.3 95.8 20.6 10.5 14.2% 32.9% 

  FO-4 34 68.3 70.6 -11.5 18.2 -26.2% -23.7% 
NOR2 FO-4 222 93.9 97.3 -12.8 33.1 1.5% 5.2% 

  FO-4 410 107 118 -15.5 40.1 15.7% 27.5% 

  FO-1 34 83.5 94.5 13.5 18.2 -25.2% -15.4% 
NOR3 FO-1 222 104 123 14.3 13 -6.9% 10.1% 

  FO-1 410 111 154 20.7 15 -0.6% 37.9% 

  FO-4 34 109 119 -9.6 -3.9 -20.9% -13.7% 
NOR3 FO-4 222 131 147 -11 2.3 -5.0% 6.7% 

  FO-4 410 141 180 -14.3 29.4 2.3% 30.6% 

  FO-1 34 123 129 17.3 17.6 -17.5% -13.5% 
NOR4 FO-1 222 144 156 8.1 -9.3 -3.5% 4.6% 

  FO-1 410 152 191 22.2 16.2 1.9% 28.0% 

  FO-4 34 156 159 -12.4 -6.1 -13.7% -12.1% 
NOR4 FO-4 222 179 185 -9.2 4.9 -1.0% 2.3% 

  FO-4 410 188 218 -18.1 -2 4.0% 20.6% 

Mean             -8.4% 9.5% 
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 The final portion of the results consists of the design of a Kogge-Stone 

adder.  The most-critical path through the Kogge-Stone adder was selected for 

the sizing example that follows.  The simulation conditions, used by Baum in the 

previous work, were duplicated to provide the most accurate comparison of 

results to future research and verification.   

 The critical path through the Kogge-Stone adder consists of six stages.  

The six stages, shown in the Figure 19, consist of xor2 (shown as a red circle), 

four A+BC complex blocks (shown in green rectangles), and one sum gate 

(shown in a yellow trapezoid).  The critical path has been highlighted in Figure 

19, while the remaining paths for the Kogge-Stone adder were omitted for visual-

clarity. 

 

 

 

 

 

 

 

 

 

Figure 19.  Kogge-Stone adder critical path. 
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 Within the Kogge-Stone adder-stages the individual logic functions are 

comprised of different discrete logic elements.  The elements and their design 

sizes are listed below in Table III. 

 

Table III.  Kogge-Stone critical path design results. 

Cell Sub-Cell 
CG+CI
NT (fF) 

Propagation 
Delay (ps) 

A 
(ohm) R  N M NSN NSP 

WN 
(um) 

WP 
(um) 

XOR2 INV (sum_out) 14.3 50 17546 2.2 1 1 1 1 0.97 2.14 

  XNOR (sum) 6.22 100 10009 2.43 4 4 2 2 1.12 1.93 

  INV (sum_in) 4.2 50 17546 2.2 1 1 1 1 0.27 0.27 

A+BC INV (black) 19.95 50 17546 2.2 1 1 1 1 1.35 2.98 

  AOI (black) 11.95 100 11089 2.51 3 2.5 2 2 1.42 3.56 

A+BC INV (black) 29.4 50 17546 2.2 1 1 1 1 1.99 4.38 

  AOI (black) 17.6 100 11089 2.51 3 2.5 2 2 2.09 5.24 

A+BC INV (black) 27.8 50 17546 2.2 1 1 1 1 1.88 4.13 

  AOI (black) 16.6 100 11089 2.51 3 2.5 2 2 1.97 4.94 

A+BC INV (black) 23 50 17546 2.2 1 1 1 1 1.55 3.42 

  AOI (black) 13.7 100 11089 2.51 3 2.5 2 2 1.62 4.08 

XOR2 INV (sum_out) 11.4 50 17546 2.2 1 1 1 1 0.77 1.7 

  XNOR (sum) 6.8 100 10009 2.43 4 4 2 2 1.22 2.98 

  INV (sum_in) 11.5 50 17546 2.2 1 1 1 1 0.79 1.738 

 

 The conditions used for the Kogge-Stone adder design were taken from 

the previous work presented by Baum [1].  These conditions include the 

interconnect capacitance for the (A+BC) logic of 15.7fF [1].  The output load was 

also taken from the earlier work from Baum and was set at 14.3fF. 

 The Kogge-Stone adder critical path was intended to take 1000ps to 

propagate. The improved design resulted in a maximum delay difference of -

4.6% (956ps) and a minimum delay difference of 1.5% (1015ps).  The internal 
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stage delays had a maximum variation of -18% (188ps-xnor) and a minimum 

stage variation of -3% (48.5ps-inverter).  
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CHAPTER SIX 
DISCUSSION 

 

 This discussion will focus on the assumptions made in previous PDM 

papers [1-34], and the impact those assumptions have on propagation delay 

results.  The concept of developing a process-independent PDM calibration 

methodology is uncommon among PDM publications.  The work by (Baum, 

Jeremy. Calibration Method of an Analytical Propagation Delay Model. San Jose: 

SJSU, 2007.), presents a unique method of calibrating analytical propagation 

delay models, bounded only by device manufacturing technology.  The intent is 

to provide a method for calibrating a standard propagation delay model for any 

given manufacturing technology.  The broad range of application, constrained 

only by manufacturing technology, comes at a cost to accuracy as demonstrated 

in the Results section.  The following section discusses the assumptions made in 

the development of the original propagation delay model [1], and the benefits or 

penalties those assumptions have on the model. 

 

6.1 Inverter Chain Fanout Selection 

 

 The initial step for calibrating a PDM for a given technology began with an 

inverter chain.  The target stage delay was selected from the fasted stable stage 

from that inverter chain.  The inverter chain is setup to only drive sequential 

stages of the same transistor size and capacitive load.  A device with an output 
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load equal to it’s input capacitance, will result in exceptionally fast propagation 

delays that will not represent typical circuit timing behavior [2].  The circuit 

architecture for a target design would be a valuable contribution to the initial step 

of finding a target delay.  If a design has an average fanout of five then the target 

stage delay, based on a fanout of one, will be unreasonably fast.  Device sizing 

must grow disproportionately large to meet the unrealistic delay expectations that 

were measured in the initial inverter chain test-bench.   

 The accuracy of a PDM is dependent upon a practical target stage delay.  

Error caused by incorrect assumptions can be seen in the following case.  Initial 

simulations show the NMOS and PMOS device-size errors as 17% and 36.8% 

respectively as shown in Appendix C.  These errors are caused from using a 

fanout of one to generate the target propagation delay, rather than using the 

fanout of two or three, typical to the Kogge-Stone adder architecture.  The result 

of using an intermediate load with fanout of two, saves significantly on the total 

number of simulations required by relaxing the target delay.  The total number of 

required simulations, to determine the correct inverter device-sizes, can be 

reduced by 14%, or from eight simulations to seven simulations, as seen in 

Appendix C. 
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6.2 Single Inverter Test-bench 

 

 In the single inverter test-bench, the output load is held constant while the 

input MOSFET devices were re-sized to meet the target propagation delay.  The 

stated intention of the single inverter test-bench was to calibrate inverter device 

sizes to drive a fanout of four, while meeting the target delay [1].  The initial 

device sizes of the NMOS and PMOS were increased by 63% and 56% 

respectively to meet the target propagation delay.  The increases in the inverter’s 

device sizes were applied without updating the inverter’s output load, resulting in 

an output load much closer to an equivalent fanout of three.  Nowhere is this 

mentioned in the published work from Baum [1], and this likely contributes to 

some of the 60% maximum error found between the calculated delays relative to 

the simulated delay.  

 

6.3 Symmetric Propagation Delay 

 

 Symmetric propagation delay is the timing method used by Baum for the 

modeling and calibration for all MOSFET analysis [1].  Logic polarity becomes 

irrelevant when designing with symmetric timing delay because rising and falling 

transitions are uniform.  The vast majority of VLSI designs are focused on one 

methodology for delay minimum average delay (MAD) [7].   MAD dominates VLSI 

design methodologies because most CMOS digital-logic architectures today are 
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comprised of twelve to twenty stages [7].  The polarity is irrelevant in standard 

CMOS designs having more than eight stages thus the method of minimum 

average delay will produce the faster solution than symmetric propagation delay.   

 The extra device size required for a logic circuit to have symmetric 

propagation delay, ranges from 4% to 7%, depending on the semiconductor 

manufacturing process.  The extra MOS size can be viewed as potential timing 

improvements (by adjusting the ratio without changing total device size) with no 

added capacitive load.  To clarify the benefit of changing the device ratio, the 

following test was performed: 

 

1) A symmetric delay inverter was built with:  

a. 32.3

€ 

ρs (1-picosecond = 

€ 

1⋅10−12  seconds) rising and falling delays. 

b. PMOS device size of 1.71

€ 

µm. 

c. NMOS device size of 0.765

€ 

µm. 

2) The ratio between the PMOS and NMOS transistors was varied around a 

fixed total device size of 2.475

€ 

µm. 

3) The PMOS transistor size was reduced to increase the NMOS transistor 

size resulting in 1.43

€ 

µm PMOS and 1.045

€ 

µm NMOS.   

4) The final timing change went from 32.3

€ 

ρs for rising and falling delays, to  

32.8

€ 

ρs to 28.8

€ 

ρs for the PMOS and NMOS transistors, respectively.  The 

average delay decreased from 32.3

€ 

ρs to 30.8

€ 

ρs. 

 

 An improvement of 4.6% (average delay) was achieved using the 

minimum average delay transistor sizing technique.  The most important aspect 

of the improved timing is the neutral effect to capacitance and power.  A device 
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driving the new inverter sees no capacitive change (NMOS and PMOS gate 

capacitance per unit length are identical) because the total transistor size 

remains constant.  Slope degradation is the one drawback that results from the 

new device ratio.  The inverter’s rising output slope (controlled by PMOS device 

size) may reduce by 20%.  Slope degradation for the rising transition is typically 

negated in subsequent circuit stages.  The polarity is likely to invert in 

subsequent stages where the improvement benefit from the slope improvements 

gained in the NMOS transistor during the minimum average delay 

 

6.4 Input Slope and Output Load Modeling 

 

 Calibration for alternate input-slope and output-load combinations was 

performed at the end of the calibration for a single slope and load combination.  

Modeling the input slope effects on propagation delay, in conjunction with 

modeling the output load effects, reduces the total number of simulation required.  

The simplification of modeling comes at a cost to the final PDM accuracy. 

  Experimental results agree with the analytical model when variation of a 

singular element is performed, either slope rate or load magnitude.  The error is 

doubled when both are scaled simultaneously.  This means that x-percent error 

from slope variation and y-percent error from load variation result in 

€ 

2 ⋅ x ⋅ y , or 

twice the error of the individual variations.  This behavior is sufficient reason for a 

continuing evaluation of the methods presented by Baum [1].  Had the model 
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constraints been applied better by using the Kogge-Stone adder topology to drive 

all the calibration boundary conditions, the results would yield significantly less 

error.  The counter argument is that constraining any model enough can make it 

100% accurate for 0.001% of applications [7].   

 Boundary conditions are an extension of the previous topic, using circuit 

architecture to guide circuit-testing conditions.  The selection of boundary 

conditions can be more important that the equations they govern.  The balance 

lay between two extreme model results: 

 

1) Overly constrained, highly accurate and not widely applicable or usable. 

2) Under constrained, very inaccurate but widely applicable. 

 

 The correct balance between these two extremes becomes evident with 

experience.  The ambitious nature of the recently educated is tempered with the 

conservative realism of a seasoned veteran.  There is no perfect solution to 

determining boundaries between the two.  Propagation delay in digital CMOS 

logic, is a field with tremendous amounts of research available.  Such availability 

makes design niches much more relevant.  Broad generalizations within this field 

can be countered with countless citations showing contrary results [8,9].  It is for 

this reason that the scope of Baum’s work needs to be reduced, and the amount 

of analysis be increased to achieve results with much smaller margins of error. 
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 Well-defined boundary conditions [9] serve as a strong example to the 

effectiveness of stringent constraints.  The topic of large SRAM array’s won’t 

apply to many readers directly, but the resulting error of <5% will grab any 

engineers attention.  Juxtapose that to the model by Baum [1], which provides a 

propagation delay model for practically any CMOS digital design, but the error is 

typically 15% and sometimes as high as 60%.  The significant magnitude of error 

mistakenly gives a sense that the method is wrong, rather than the method is 

being too loosely constrained.  Constraining the application of the model by 

Baum would reduce the error and in turn become more likely to be cited as 

applicable peer research. 

 The proof of concept presented by Baum was performed on devices of 

significantly greater complexity than the elemental logic used in the calibration of 

the propagation delay model [1].  A Kogge-Stone adder, though it uses some 

basic gates, is comprised on many multi-stage, complex AOI-logic.  Initial 

calibration was performed on devices with singular current paths (NAND, NOR, 

Inverter).  The additional capacitance, present on intermediate circuit nodes, was 

not calibrated for in the original propagation delay model.  Had the initial 

calibration procedure been performed under boundary conditions derived from 

the Kogge-Stone adder, the resulting accuracy would have been much more 

accurate, as presented in the Results section that follows. 
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6.5 Improved Methods 

 

 One method improvement consists of making one more round of data 

calibration, using the known result-errors, and scaling the results.  This is 

sometimes called “back-fitting” data [3,5,6], and is conceptually similar to the 

intermediate model calibration steps.  The goal of back fitting is to use the error 

results to adjust the model to ultimately improve result-accuracy.  Other, more 

analytical methods, involve re-evaluation of initial assumptions to address the 

root-sources that cause the errors.  Both of these methods are detailed in the 

Discussion section, and implemented below, in the final section of the results 

(Improved Methods).  

 

The first stage of the propagation delay model calibration method involves 

building an inverter chain and extracting the fastest possible single propagation 

delay.  The assumptions are: 

 

1) Inverter Chain Method 

a. Apply an input slope, 10

€ 

ρs, to the first inverter of the inverter chain. 

b. Check the propagation delay of each inverter down the chain, until 

the delay stabilizes (less than 1% change from previous stage). 

c. Use the stable delay as the target delay for all the models and 

analysis for the rest of the calibration process. 

2) Inverter Chain Sizing: 

a. Small inverter chain: 
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i. Minimum process allowed device size for the NMOS. 

ii. Double the NMOS size to match the generic ratio of PMOS 

to NMOS of two. 

b. Large inverter chain: 

i. Scale the NMOS of the small chain inverter, up, by a factor 

of twenty-five. 

ii. Scale the PMOS of the small chain inverter, up, by a factor 

of twenty-five. 

3) Inverter Chain Constraints 

a. Set up the chain so each inverter is only driving an effective fanout 

of one. 

b. Do not add parasitic capacitance wires connecting the inverter 

chain. 

 

 The last constraint, setting each stage to drive fanout of one, will have a 

tremendous impact on the target delay number, and the resulting number of 

simulations required to calibrate the process.  If the propagation delay was 

derived from an inverter chain driving a fanout of two, the amount of simulation 

effort can be reduced by up to 14.3%.  Table III shows the results from the 

method used by Baum [1].  The seven simulations show the steps of scaling an 

inverter to drive a fanout of four, with the propagation delay derived from the 

inverter-chain.  Table IV shows the results of the modified method for the 

inverter-chain simulation.  The modification involves simulation of an inverter 

chain, with a fanout of two, rather than the original fanout of one.  All other 

conditions and assumptions, aside from the output load,  are applied. 
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Table IV.  Results of single inverter test-bench iterations. 

Simulation

WN(cm) Current 

WP(cm) Current
tPHL Measured(ps)   

tPHL Measured(ps)

%Error 
from target 
32.3ps

WN(cm) Next 

WP(cm) Next

1
4.84E-05      
9.68E-05

37.8               
44.2

17.03      
36.84

5.66E-05     
1.32E-04

2
5.66E-05     
1.32E-04

37.0               
36.5

14.55    
13.00

6.49E-05     
1.50e-04

3
6.49E-05     
1.50e-04

35.0                
34.4

8.36         
6.50

7.03E-5        
1.59E-4

4
7.03E-5        
1.59E-4

33.9               
33.4

4.95         
3.41

7.38E-5         
1.65E-4

5
7.38E-5         
1.65E-4

33.1               
33.0

2.48          
2.17

7.56E-5         
1.68E-4

6
7.56E-5         
1.68E-4

32.8               
32.7  

1.55        
1.24

7.68E-5        
1.71e-4

7
7.68E-5        
1.71e-4

32.6               
32.6

0.93        
0.93

 

Table V.  Improved results of single inverter test-bench iterations. 

Simulation

WN(cm) Current 

WP(cm) Current
tPHL Measured(ps)   

tPHL Measured(ps)

%Error 
from target 
39.3ps

WN(cm) Next 

WP(cm) Next

1
3.68E-04      
7.36E-05

42.47               
45.10

10.05      
16.84

4.05E-05     
8.60E-05

2
4.05E-05     
8.60E-05

41.33           
41.73

7.08        
8.11

4.33E-05     
9.29E-05

3
4.33E-05     
9.29E-05

40.28            
40.07

4.37        
3.80

4.52E-05    
9.64E-05

4
4.52E-05     
9.64E-05

39.34           
39.07      

1.92        
1.21   

4.61E-05      
9.75E-05

5
4.61E-05      
9.75E-05

39.02           
38.97

1.04        
0.97

4.66E-05     
9.84E-05

6
4.50E-05     
9.90E-05

7

 

 

 The 14.3% improvement over the original method presented by Baum [1], 

is achieved through performing one less simulation.  The stage reduction is the 

direct result of the relaxed target delay (39.3

€ 

ρs).  The elimination of one 
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calibration step is attributed to the relaxation of the target propagation delay and 

the closer relative magnitude between a fanout of two and a fanout of four. 

 The saving of 15% effort for characterization would not be beneficial if it 

came with any further penalty to the model propagation error.  The entire method 

was completed, through to the derivation of (

€ 

γ(NMOS )N=1,γ(NMOS )N= 2,γ(NMOS )N= 3,γ(NMOS )N= 4

) and (

€ 

γ(PMOS )N=1,γ(PMOS )N= 2,γ(PMOS )N= 3,γ(PMOS )N= 4 ).  The models for the Inverter, NAND2 

and the NOR3, were all calculated and simulated, resulting in an error within plus 

or minus 2% of the error presented by Baum, seen in Tables III and Table IV. 

 The aforementioned analytical modification demonstrates that significant 

reduction in effort is possible with relatively small adjustments to the initial 

assumptions by Baum [1].  The effort and accuracy can be exchanged 

throughout the model calibration process.  Taking extra time to isolate and 

understand each element of the method allows for fine-tuning of the individual 

steps.  This fine-tuning leads to increasingly accurate results.   

 The following example demonstrates the accuracy improvement potential 

from isolating one model-element, simulating different variations to understand 

the element’s behavior, and the result improvement found from changing the 

initial method. 

 Effective resistance is an area for potential improvement and modification 

within the context of PDM calibration.  The existing method [1] of comparing input 

voltage and output current for various stacks of MOS transistors, has many 

potential areas for improvement.  Digital CMOS architecture shows that the 
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higher the stacked devices, the greater the internal load from the complimentary 

devices’ diffusions.  A NAND2 (NMOS stack of two-devices) has two parallel 

PMOS devices attached to the output path, and NAND3 has three parallel 

devices.  Therefore the load will not only increase the resistance for taller stacks 

but it will increase the capacitance too.  The stacked-device test-bench only 

accounts for resistive increases and negates those from the added cap of the 

complimentary MOS devices. 

 There are many ways to incorporate realistic device impacts, into the 

stacked test-bench.  To degrade the current path for the stacked devices, one or 

more of the stacked MOS transistors can be turned partially on, to impede the 

current path.  This is similar to the singular MOS device gate voltage being 

applied in the original calibration technique from Baum [1].  The main problem 

with limiting the transistors current is the extra impedance, which behaves like a 

resistor rather than as a capacitor.  Such constraints can be accurate over very 

small operating voltages, but fail to emulate the capacitive behavior needed over 

the full operational voltage range.   

 The PDM calibration and results, presented by Baum [1], were repeated 

and verified using the TSMC0.18 manufacturing process file as seen in Appendix 

A.  The final PDM [1] was an improvement over the delay models presented by 

Kang [2], but delay errors were still as high as 60%.  To improve the accuracy 

and provide a more intuitive methodology, the individual calibration stages were 

each characterized to clarify their contribution to the final PDM accuracy.  The 
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three most influential improvements were presented and provide an average 

accuracy improvement of 14.6% over the methods presented by Baum [1].  Any 

future work can be added as a fourth level of improvement to the foundation 

developed herein. 

 

6.6 Analysis of Previous Results 

 

 The error results from the previous work [1] have some trends that are 

important to understand.  Trends within the data show where the model is more 

accurate and where it is less accurate.  The scope of application for the work by 

Baum is so vast, that it cannot accurately account for all the infinite conditions 

and design solutions possible.  The TSMC0.18

€ 

µm process was put through the 

method-steps demonstrated in the previous pages.  The results are as follows: 

1) All devices with max-sized devices (on the order of twenty-five times the min 

device size) have: 

a. Average Error: 5.66% (This indicates the simulation was 5.66% faster 

than the analytical propagation delay model and fitting coefficients 

predicted, and the devices need to be decreased in size to remedy). 

b. Standard Deviation: of 16.58% (This indicates that even though the 

average error was small, the amount of variation was spread 

significantly wide).  

2) All devices with the min-sized devices have: 

a. Average Error: -36.9% (This indicates the simulation was 36.9% slower 

than the analytical propagation delay model and fitting coefficients 

predicted, and the devices need to be increased in size to remedy). 
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b. Standard Deviation: of 8.15% (This indicates that even though the 

average error was large, the amount of variation was spread over a 

relatively narrow range). 
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Table VI.  Standard cell delay calibration and error of TSMC0.18. 

Device 
Type 

Fanou
t-
Used 

Input 
Slope 
(ps) 

Min Delay 
Arc (ps) 

Max Delay 
Arc (ps) 

Min Device 
Width 
%Error 

Max Device 
Width 
%Error 

Min Delay Arc: 
Gate Voltage of 
86% VDD 
(Rather than 
90%) 

  FO-1 40 21 43 -29.4 23.3 -7.4 
Inverter FO-1 320 40 74 -25 37.9 22.9 
  FO-1 600 51.3 90 -35 18.1 10.8 
  FO-4 40 25.3 70 -40.8 13 -25.4 
Inverter FO-4 320 55 120 -46.5 26.2 -20.8 
  FO-4 600 68.8 140 -48. 9.3 -23.8 
  FO-1 40 33.7 69 -30.3 20.5 -11.6 
NAND2 FO-1 320 56 100 -31.6 13.6 6.2 
  FO-1 600 83.7 120 -38.1 5.9 3.7 
  FO-4 40 39.8 125 -38.5 15.6 -28.8 
NAND2 FO-4 320 70 150 -44.3 21.2 -32.5 
  FO-4 600 101 160 -49.2 -5 -32.4 
  FO-1 40 52 95 -33.5 14.2 -14.5 
NAND3 FO-1 320 81.9 120 -36.3 15.6 -6.9 
  FO-1 600 118 150 -40.2 -8.1 -8.9 
  FO-4 40 58 170 -39.5 11.6 -26.7 
NAND3 FO-4 320 93 180 -44.1 8.8 -36.8 
  FO-4 600 135 160 -47.6 -13.1 -34.7 
  FO-1 40 73.7 130 -35.5 8.7 -17.8 
NAND4 FO-1 320 112 160 -38.1 1.8 -20.3 
  FO-1 600 155 170 -42.1 -16.4 -15.6 
  FO-4 40 79.8 220 -40.2 7.3 -28.6 
NAND4 FO-4 320 123 180 -47.4 -2.9 -40.1 
  FO-4 600 172 172 -30.3 -20 -38.9 
  FO-1 40 47 73 -23.1 25 8.5 
NOR2 FO-1 320 80 114 -20.4 36.1 20.8 
  FO-1 600 94 140 -29.4 25.2 20.6 
  FO-4 40 54 120 -35 17.6 -11.5 
NOR2 FO-4 320 90 170 -40.8 23 -12.8 
  FO-4 600 106 175 -47 14.3 -15.5 
  FO-1 40 83.5 110 -23 18 13.5 
NOR3 FO-1 320 113 155 -24.8 -7.6 14.3 
  FO-1 600 133 180 -32.8 -12.6 20.7 
  FO-4 40 98 170 -31 13.9 -9.6 
NOR3 FO-4 320 133 200 -41.8 -9.8 -11 
  FO-4 600 155 230 -47.3 -15 -14.3 
  FO-1 40 137 163 -24.7 -11.9 17.3 
NOR4 FO-1 320 177 200 -34.2 -16.7 8.1 
  FO-1 600 195 195 -38.7 -19.2 22.2 
  FO-4 40 156 230 -28.9 -11.8 -12.4 
NOR4 FO-4 320 202 230 -44.3 -17.7 -9.2 
  FO-4 600 221 221 -49.5 -20 -18.1 

          
Column 
Average     -36.88 5.66 -13.5  

        
Standard 
Deviation   8.15 16.58 18.7   
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 Table VI shows the results for the analytical solution and final modeling of 

seven of the most common CMOS digital integrated circuits.  The highlighted 

areas are key results that represent trends found in the original propagation 

delay model [1].  The purpose for identifying these trends is to determine if any 

modifications can be applied to the original method, with the goal of improving 

the overall accuracy, as well as leave definitive areas where future work could be 

effectively focused. 

 The “Min-Delay Arcs” shown in Table VI, average much higher than any 

other modeling corner.  This increased average indicates that across all families 

the method for calculating propagation delay is not resulting in devices large 

enough to meet the target delay of 32.6

€ 

ρs.  The only calculations that meet or 

exceed the timing requirements, are the inverter-logic, with minimum input slope, 

and two different output loads.  The two results highlighted in yellow represent 

this distinguished and unique accuracy.   

 Minimum device-width error demonstrates the combined effect of scaling 

input slope and output load to the farthest corners of the PDM model.  Every 

result that is at the maximum-scaled slope shows a magnitude of error greater 

than any of the entries within the same sub-category, are highlighted in pink as 

shown in Table II.  Another interpretation would be that small devices with large 

input slopes are exceptionally inaccurate.  This behavior demonstrates a clear 

correlation between error and input-conditions as shown in the far-right column of 

Table VI. 
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 “Max Device-Width Error” shows no obvious patterns like that found in the 

“Min Device-Width Errors.”  The span of the max device error is vast and non-

uniform, ranging from -20% to +37%.  The standard deviation is another way to 

view the erratic variation found between the propagation delay model and the 

simulation results.  The CMOS logic-cells with the smallest error, are commonly 

made of intermediate complexity (NAND2 and NOR2), and the largest errors are 

correlate to cells with extremes in logic complexity, either most simple or most 

complex (Inverter, NAND4, NOR4).   

 The error between the calibrated-propagation model from Baum and the 

simulation-results shown in Table II are significant.  The error does show unique 

behavior among each specific testing condition and knowing which conditions will 

aggravate which types of error can provide a starting point for rectification.   

 

6.7   Results Conclusion 

 

 The final results show the improvement to the work presented by Baum [1] 

in both discrete and block level circuit designs.  Accuracy improves over larger 

designs as alternating errors average out to smaller total effect.  The methods 

detailed in the Method for Calibration section provide an improved procedure and 

greater accuracy in results than the previous work.   
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APPENDIX A.  TSMC 0.18

€ 

µm PROCESS FILE. 
 
//  File: tsmc18d.scs 
//  Abstract: TSMC 0.18u CMOS018/DEEP (6M, HV FET, sblock) Spectre Models 
// simulator options simulator lang=spectre insensitive=yes 
//  4-Terminal NMOS Model 
//  DATE: Dec  9/02 
//  LOT: T29B                  WAF: 6003 
//  Temperature_parameters=Default model tsmc18dn bsim3v3 type=n  
+ version=3.1                tnom=27                     tox=4e-9 
+ xj=1e-7                     nch=2.3549e17              vth0=0.3627858 
+ k1=0.5873035               k2=4.793052e-3             k3=1e-3 
+ k3b=2.2736112              w0=1e-7                     nlx=1.675684e-7 
+ dvt0w=0                    dvt1w=0                     dvt2w=0 
+ dvt0=1.7838401             dvt1=0.5354277             dvt2=-1.243646e-3 
+ u0=263.3294995             ua=-1.359749e-9            ub=2.250116e-18 
+ uc=5.204485e-11            vsat=1.083427e5            a0=2 
+ ags=0.4289385              b0=-6.378671e-9            b1=-1e-7 
+ keta=-0.0127717            a1=5.347644e-4             a2=0.8370202 
+ rdsw=150                   prwg=0.5                    prwb=-0.2 
+ wr=1                        wint=1.798714e-9           lint=7.631769e-9 
+ xl=-2e-8                    xw=-1e-8                    dwg=-3.268901e-9 
+ dwb=7.685893e-9            voff=-0.0882278            nfactor=2.5 
+ cit=0                       cdsc=2.4e-4                 cdscd=0 
+ cdscb=0                     eta0=2.455162e-3           etab=1 
+ dsub=0.0173531             pclm=0.7303352             pdiblc1=0.2246297 
+ pdiblc2=2.220529e-3        pdiblcb=-0.1                drout=0.7685422 
+ pscbe1=8.697563e9          pscbe2=5e-10               pvag=0 
+ delta=0.01                 rsh=6.7                     mobmod=1 
+ prt=0                       ute=-1.5                    kt1=-0.11 
+ kt1l=0                      kt2=0.022                   ua1=4.31e-9 
+ ub1=-7.61e-18              uc1=-5.6e-11                at=3.3e4 
+ wl=0                        wln=1                      ww=0 
+ wwn=1                      wwl=0                       ll=0 
+ lln=1                       lw=0                        lwn=1 
+ lwl=0                       capmod=2                    xpart=0.5 
+ cgdo=7.16e-10              cgso=7.16e-10              cgbo=1e-12 
+ cj=9.725711e-4             pb=0.7300537               mj=0.365507 
+ cjsw=2.604808e-10          pbsw=0.4                    mjsw=0.1 
+ cjswg=3.3e-10              pbswg=0.4                   mjswg=0.1 
+ cf=0                        pvth0=4.289276e-4          prdsw=-4.2003751 
+ pk2=-4.920718e-4           wketa=6.938214e-4          lketa=-0.0118628 
+ pu0=24.2772783             pua=9.138642e-11           pub=0 
+ pvsat=1.680804e3           peta0=2.44792e-6           pketa=4.537962e-5 
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 //  DATE: Dec  9/02 
//  LOT: T29B                  WAF: 6003 
//  Temperature_parameters=Default 
// 
model tsmc18dp bsim3v3 type=p  
+ version=3.1                tnom=27                     tox=4e-9 
+ xj=1e-7                     nch=4.1589e17              vth0=-0.4064886 
+ k1=0.5499001               k2=0.0389453               k3=0 
+ k3b=11.4951756             w0=1e-6                     nlx=9.143209e-8 
+ dvt0w=0                    dvt1w=0                     dvt2w=0 
+ dvt0=0.5449299             dvt1=0.3160821             dvt2=0.1 
+ u0=117.9612996             ua=1.64867e-9              ub=1.165056e-21 
+ uc=-1e-10                  vsat=2e5                    a0=1.7833459 
+ ags=0.407511               b0=1.314603e-6             b1=5e-6 
+ keta=0.0137171             a1=0.4610527               a2=0.6597363 
+ rdsw=364.9443889           prwg=0.5                    prwb=-0.1129203 
+ wr=1                        wint=0                      lint=2.007556e-8 
+ xl=-2e-8                    xw=-1e-8                    dwg=-2.835566e-8 
+ dwb=8.003075e-9            voff=-0.1064646            nfactor=2 
+ cit=0                       cdsc=2.4e-4                 cdscd=0 
+ cdscb=0                     eta0=0.0141703             etab=-0.0398356 
+ dsub=0.4441401             pclm=2.2364512             pdiblc1=9.167645e-4 
+ pdiblc2=0.0209189          pdiblcb=-9.568266e-4       drout=9.976778e-4 
+ pscbe1=1.731161e9          pscbe2=5e-10               pvag=14.337819 
+ delta=0.01                 rsh=7.5                     mobmod=1 
+ prt=0                       ute=-1.5                    kt1=-0.11 
+ kt1l=0                      kt2=0.022                   ua1=4.31e-9 
+ ub1=-7.61e-18              uc1=-5.6e-11                at=3.3e4 
+ wl=0                        wln=1                       ww=0 
+ wwn=1                      wwl=0                       ll=0 
+ lln=1                       lw=0                        lwn=1 
+ lwl=0                       capmod=2                    xpart=0.5 
+ cgdo=6.79e-10              cgso=6.79e-10              cgbo=1e-12 
+ cj=1.176396e-3             pb=0.8607121               mj=0.4163285 
+ cjsw=2.135953e-10          pbsw=0.6430918             mjsw=0.2654457 
+ cjswg=4.22e-10             pbswg=0.6430918            mjswg=0.2654457 
+ cf=0                        pvth0=4.364418e-3          prdsw=4.4192048 
+ pk2=3.104478e-3            wketa=0.0270296            lketa=2.038008e-3 
+ pu0=-2.3639825             pua=-8.41675e-11           pub=1e-21 
+ pvsat=-50                  peta0=1e-4                  pketa=-1.444802e-3 
 
 
 
 



 89 

APPENDIX B.  IBM 0.13

€ 

µm PROCESS FILE. 
 
T73J SPICE BSIM3 VERSION 3.1 PARAMETERS 
SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8 
* DATE: Aug 10/07 
* LOT: T73J                  WAF: 2001 
* Temperature_parameters=Default MODEL CMOSN NMOS (LEVEL   = 49 
+VERSION = 3.1             TNOM= 27               TOX= 3.2E-9 
+XJ= 1E-7             NCH= 2.3549E17        VTH0= 0.0564776 
+K1= 0.2897355        K2= -0.015383        K3= 1E-3 
+K3B= 4.0710922       W0= 1E-7             NLX= 1E-6 
+DVT0W= 0                DVT1W= 0                DVT2W= 0 
+DVT0= 1.0145151       DVT1= 0.1685897       DVT2= 0.2406542 
+U0= 445.1306953      UA= -4.57424E-10     UB= 3.44869E-18 
+UC= 3.952766E-10    VSAT= 1.998507E5    A0= 0.8864242 
+AGS= 0.8658495       B0= 6.191191E-6      B1= 5E-6 
+KETA= 0.0262826       A1= 1.39548E-3       A2= 0.3 
+RDSW= 150              PRWG= 0.3535806      PRWB= 0.1081166 
+WR= 1                WINT= 1.225721E-8     LINT= 1.036724E-8 
+DWG= 4.018893E-9     DWB= 1.292839E-8     VOFF= -0.0406926 
+NFACTOR = 2.5             CIT= 0                CDSC= 2.4E-4 
+CDSCD= 0                CDSCB= 0                ETA0= 2.769384E-6 
+ETAB= 0.4385468       DSUB= 4.088069E-6     PCLM= 0.963888 
+PDIBLC1= 0.9949239       PDIBLC2 = 0.01            PDIBLCB = 0.1 
+DROUT= 0.9981743       PSCBE1= 7.959045E10     PSCBE2= 5E-10 
+PVAG= 0.500353        DELTA= 0.01             RSH= 6.9 
+MOBMOD= 1               PRT= 0                UTE= -1.5 
+KT1= -0.11            KT1L= 0                KT2= 0.022 
+UA1= 4.31E-9          UB1= -7.61E-18        UC1= -5.6E-11 
+AT= 3.3E4            WL= 0                WLN= 1 
+WW= 0                WWN= 1                WWL= 0 
+LL= 0                LLN= 1                LW= 0 
+LWN= 1               LWL= 0                CAPMOD= 2 
+XPART= 0.5              CGDO= 4E-10            CGSO= 4E-10 
+CGBO= 1E-12           CJ= 8.385747E-4      PB= 0.8813098 
+MJ= 0.5484215        CJSW= 2.460231E-10    PBSW= 0.8 
+MJSW= 0.3063897       CJSWG= 3.3E-10         PBSWG= 0.8 
+MJSWG= 0.3063897       CF= 0                PVTH0= 2.009264E-4 
+PRDSW= 0                PK2= 1.30501E-3       WKETA= -2.516447E-3 
+LKETA= 5.135467E-3     PU0= 4.4729531        PUA= 1.66833E-11 
+PUB= 0                PVSAT= 653.2294237     PETA0= 1E-4 
+PKETA= -0.0282915) 
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.MODEL CMOSP PMOS (LEVEL   = 49 
+VERSION = 3.1             TNOM= 27               TOX= 3.2E-9 
+XJ= 1E-7             NCH= 4.1589E17        VTH0= -0.2285194 
+K1= 0.236504         K2= 0.0273863        K3= 0.0989953 
+K3B= 6.4994037       W0= 1E-6             NLX= 2.709344E-7 
+DVT0W= 0                DVT1W= 0                DVT2W= 0 
+DVT0= 7.848909E-3     DVT1= 0.0871763       DVT2= 0.1 
+U0= 110.9145614      UA= 1.460494E-9      UB= 1E-21 
+UC= -2.14484E-11    VSAT= 2E5              A0= 0.6677214 
+AGS= 0.1149671       B0= 8.195389E-6      B1= 3.845906E-6 
+KETA= 0.0335186       A1= 1.14322E-3       A2= 0.4010086 
+RDSW= 105.0859242     PRWG= -0.4995324      PRWB= 0.5 
+WR= 1                WINT= 0                LINT= 8.79977E-9 
+DWG= 1.248761E-9     DWB= -2.285216E-8    VOFF= -0.1022829 
+NFACTOR = 1.5332272  CIT = 0                CDSC= 2.4E-4 
+CDSCD= 0                CDSCB= 0                ETA0= 1.602419E-3 
+ETAB= -7.975494E-3    DSUB= 1.660379E-3     PCLM= 0.1189766 
+PDIBLC1 = 0.0169335       PDIBLC2= -1.81127E-11    PDIBLCB = -1E-3 
+DROUT= 0                PSCBE1= 6.701825E9      PSCBE2  = 2.047831E-9 
+PVAG= 3.671013E-4     DELTA= 0.01             RSH= 6.6 
+MOBMOD= 1               PRT= 0                UTE= -1.5 
+KT1= -0.11            KT1L= 0                KT2= 0.022 
+UA1= 4.31E-9          UB1= -7.61E-18        UC1= -5.6E-11 
+AT= 3.3E4            WL= 0                WLN= 1 
+WW= 0                WWN= 1                WWL= 0 
+LL= 0                LLN= 1                LW= 0 
+LWN = 1                LWL = 0                CAPMOD= 2 
+XPART= 0.5              CGDO= 3E-10            CGSO= 3E-10 
+CGBO= 1E-12           CJ= 1.174293E-3      PB= 0.8219834 
+MJ= 0.4095402        CJSW= 1.316489E-10    PBSW= 0.8813044 
+MJSW= 0.1              CJSWG= 4.22E-10        PBSWG= 0.8813044 
+MJSWG= 0.1             CF= 0                PVTH0= 5.431055E-4 
+PRDSW= 52.1485073      PK2= 1.86276E-3       WKETA= 0.0353662 
+LKETA= 9.219417E-3     PU0= -1.2656982       PUA= -5.86504E-11 
+PUB= 8.61298E-24     PVSAT= 50               PETA0= 1E-4 
+PKETA= -2.855693E-3) 
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APPENDIX C.  INVERTER SIZING TABLES. 
 

The Inverter Sizing Table (Original Verified Method) 

Simulation 
WN(cm) Current 
WP(cm) Current 

tPHL measured(ps)   
tPHL measured(ps) 

%Error 
from target 

32.3ps 
WN(cm) Next 
WP(cm) Next 

1 
4.84E-04      
9.68E-05 

37.8               
44.2 

17.03      
36.84 

5.66E-05     
1.32E-04 

2 
5.66E-05     
1.32E-04 

37.0               
36.5 

14.55    
13.00 

6.49E-05     
1.50e-04 

3 
6.49E-05     
1.50e-04 

35.0                
34.4 

8.36         
6.50 

7.03E-5        
1.59E-4 

4 
7.03E-5        
1.59E-4 

33.9               
33.4 

4.95         
3.41 

7.38E-5         
1.65E-4 

5 
7.38E-5         
1.65E-4 

33.1               
33.0 

2.48       
2.17 

7.56E-5         
1.68E-4 

6 
7.56E-5         
1.68E-4 

32.8               
32.7    

1.55        
1.24 

7.68E-5        
1.71e-4 

7 
7.68E-5        
1.71e-4 

32.6               
32.6 

0.93        
0.93   

 
The Improvement (New Shortened Method) 

Simulation 
WN(cm) Current 
WP(cm) Current 

tPHL measured(ps)   
tPHL measured(ps) 

%Error 
from target 

38.6ps 
WN(cm) Next 
WP(cm) Next 

1 
3.68E-04      
7.36E-05 

42.47               
45.10 

10.05      
16.84 

4.05E-05     
8.60E-05 

2 
4.05E-05     
8.60E-05 

41.33           
41.73 

7.08        
8.11 

4.33E-05     
9.29E-05 

3 
4.33E-05     
9.29E-05 

40.28            
40.07 

4.37        
3.80 

4.52E-05    
9.64E-05 

4 
4.52E-05     
9.64E-05 

39.34           
39.07  

1.92        
1.21  

4.61E-05      
9.75E-05 

5 
4.61E-05      
9.75E-05 

39.02           
38.97 

1.11        
0.97 

4.66E-05     
9.84E-05 

6 
4.50E-05     
9.90E-05  N/A  N/A  N/A 

7  One less step       
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APPENDIX D.  RESULTS VERIFICATION. 
 

Device 
Type 

FO 
Used 

Input 
Slope 
(ps) 

Min 
Delay 
(ps) 

Max 
Delay 
(ps) 

Min Dev. 
width 

%Error 

Max Dev. 
width 

%Error 

Improved Min 
Device width 

%Error 

Improved Max 
Device width 

%Error 

  FO-1 34 18 39.9 -9.3 27 -7.4 24.9 

Inverter FO-1 222 NA NA 21.5 60.2 22.9 44.2 

  FO-1 410 55 69.2 9 34.1 10.8 24.6 

  FO-4 34 20.3 55 -26.2 9.9 -25.4 -11.4 

Inverter FO-4 222 55 130 -22.6 43.9 -20.8 25.3 

  FO-4 410 55 150 -25.4 24.3 -23.8 23.3 

  FO-1 34 26.3 64.4 -12.5 16.3 -11.6 -8.4 

NAND2 FO-1 222 65 83 5.7 48.7 6.2 20.3 

  FO-1 410 70 103 2.6 27.8 3.7 1.8 

  FO-4 34 31.8 100 -28.9 9.1 -28.8 -2.1 

NAND2 FO-4 222 65 140 -32.6 33.7 -32.5 24.9 

  FO-4 410 67 150 -33.5 15.4 -32.4 9.1 

  FO-1 34 40.4 95.5 -15.7 8.7 -14.5 -0.8 

NAND3 FO-1 222 70 115 -8.7 27.8 -6.9 22.3 

  FO-1 410 77 135 -10 14.5 -8.9 -4.8 

  FO-4 34 45.9 140 -27.5 5.4 -26.7 -19.3 

NAND3 FO-4 222 66.8 150 -36.8 18.4 -36.8 13.5 

  FO-4 410 89.6 160 -36.4 10.4 -34.7 -12.1 

  FO-1 34 57.1 132 -19.5 2.1 -17.8 -3.1 

NAND4 FO-1 222 79.5 151 -20.7 9.9 -20.3 -13.9 

  FO-1 410 101 169 -17.4 12.9 -15.6 -5.3 

  FO-4 34 62.5 200 -29.8 -0.7 -28.6 -23.3 

NAND4 FO-4 222 88.8 150 -41.5 7.7 -40.1 4.2 

  FO-4 410 113 170 -40.3 10.4 -38.9 -16 

  FO-1 34 45 60.6 7.3 28.8 8.5 25.1 

NOR2 FO-1 222 77 77 20.3 58.9 20.8 34.1 

  FO-1 410 94.5 94.5 19.5 19.5 20.6 10.5 

  FO-4 34 43 134 -12.7 19.1 -11.5 18.2 

NOR2 FO-4 222 80 171 -13.9 41.3 -12.8 33.1 

  FO-4 410 100 208 -16.4 41.2 -15.5 40.1 

  FO-1 34 80 92 13.4 25.1 13.5 18.2 

NOR3 FO-1 222 95 109 14.2 35.5 14.3 13 

  FO-1 410 123 123 20.2 41.4 20.7 15 

  FO-4 34 77 165 -11.5 18.9 -9.6 -3.9 

NOR3 FO-4 222 100 203 -11.8 24.7 -11 2.3 

  FO-4 410 120 237 -15.5 30.4 -14.3 29.4 

  FO-1 34 115 134 16.1 22.1 17.3 17.6 

NOR4 FO-1 222 115 150 7.5 14.6 8.1 -9.3 

  FO-1 410 NA NA 21.9 29.6 22.2 16.2 
  FO-4 34 123 207 -12.9 18.3 -12.4 -6.1 

NOR4 FO-4 222 132 244 -11 9.3 -9.2 4.9 

  FO-4 410 150 273 -18.2 24.4 -18.1 -2 
Mean   77.24 138.35 -10.48 20.35 -9.5 7.6 

Std.  Dev.    31.88 53.5 18.7 14.4 18.7 17 
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