3 research outputs found

    Quantized Feature Distillation for Network Quantization

    Full text link
    Neural network quantization aims to accelerate and trim full-precision neural network models by using low bit approximations. Methods adopting the quantization aware training (QAT) paradigm have recently seen a rapid growth, but are often conceptually complicated. This paper proposes a novel and highly effective QAT method, quantized feature distillation (QFD). QFD first trains a quantized (or binarized) representation as the teacher, then quantize the network using knowledge distillation (KD). Quantitative results show that QFD is more flexible and effective (i.e., quantization friendly) than previous quantization methods. QFD surpasses existing methods by a noticeable margin on not only image classification but also object detection, albeit being much simpler. Furthermore, QFD quantizes ViT and Swin-Transformer on MS-COCO detection and segmentation, which verifies its potential in real world deployment. To the best of our knowledge, this is the first time that vision transformers have been quantized in object detection and image segmentation tasks.Comment: AAAI202

    Stochastic Precision Ensemble: Self-Knowledge Distillation for Quantized Deep Neural Networks

    Full text link
    The quantization of deep neural networks (QDNNs) has been actively studied for deployment in edge devices. Recent studies employ the knowledge distillation (KD) method to improve the performance of quantized networks. In this study, we propose stochastic precision ensemble training for QDNNs (SPEQ). SPEQ is a knowledge distillation training scheme; however, the teacher is formed by sharing the model parameters of the student network. We obtain the soft labels of the teacher by changing the bit precision of the activation stochastically at each layer of the forward-pass computation. The student model is trained with these soft labels to reduce the activation quantization noise. The cosine similarity loss is employed, instead of the KL-divergence, for KD training. As the teacher model changes continuously by random bit-precision assignment, it exploits the effect of stochastic ensemble KD. SPEQ outperforms the existing quantization training methods in various tasks, such as image classification, question-answering, and transfer learning without the need for cumbersome teacher networks
    corecore